| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fconstfvm | Unicode version | ||
| Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 5782. (Contributed by Jim Kingdon, 8-Jan-2019.) |
| Ref | Expression |
|---|---|
| fconstfvm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5410 |
. . 3
| |
| 2 | fvconst 5753 |
. . . 4
| |
| 3 | 2 | ralrimiva 2570 |
. . 3
|
| 4 | 1, 3 | jca 306 |
. 2
|
| 5 | fvelrnb 5611 |
. . . . . . . . 9
| |
| 6 | fveq2 5561 |
. . . . . . . . . . . . . 14
| |
| 7 | 6 | eqeq1d 2205 |
. . . . . . . . . . . . 13
|
| 8 | 7 | rspccva 2867 |
. . . . . . . . . . . 12
|
| 9 | 8 | eqeq1d 2205 |
. . . . . . . . . . 11
|
| 10 | 9 | rexbidva 2494 |
. . . . . . . . . 10
|
| 11 | r19.9rmv 3543 |
. . . . . . . . . . 11
| |
| 12 | 11 | bicomd 141 |
. . . . . . . . . 10
|
| 13 | 10, 12 | sylan9bbr 463 |
. . . . . . . . 9
|
| 14 | 5, 13 | sylan9bbr 463 |
. . . . . . . 8
|
| 15 | velsn 3640 |
. . . . . . . . 9
| |
| 16 | eqcom 2198 |
. . . . . . . . 9
| |
| 17 | 15, 16 | bitr2i 185 |
. . . . . . . 8
|
| 18 | 14, 17 | bitrdi 196 |
. . . . . . 7
|
| 19 | 18 | eqrdv 2194 |
. . . . . 6
|
| 20 | 19 | an32s 568 |
. . . . 5
|
| 21 | 20 | exp31 364 |
. . . 4
|
| 22 | 21 | imdistand 447 |
. . 3
|
| 23 | df-fo 5265 |
. . . 4
| |
| 24 | fof 5483 |
. . . 4
| |
| 25 | 23, 24 | sylbir 135 |
. . 3
|
| 26 | 22, 25 | syl6 33 |
. 2
|
| 27 | 4, 26 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fo 5265 df-fv 5267 |
| This theorem is referenced by: fconst3m 5784 |
| Copyright terms: Public domain | W3C validator |