| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fconstfvm | Unicode version | ||
| Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 5791. (Contributed by Jim Kingdon, 8-Jan-2019.) |
| Ref | Expression |
|---|---|
| fconstfvm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5419 |
. . 3
| |
| 2 | fvconst 5762 |
. . . 4
| |
| 3 | 2 | ralrimiva 2578 |
. . 3
|
| 4 | 1, 3 | jca 306 |
. 2
|
| 5 | fvelrnb 5620 |
. . . . . . . . 9
| |
| 6 | fveq2 5570 |
. . . . . . . . . . . . . 14
| |
| 7 | 6 | eqeq1d 2213 |
. . . . . . . . . . . . 13
|
| 8 | 7 | rspccva 2875 |
. . . . . . . . . . . 12
|
| 9 | 8 | eqeq1d 2213 |
. . . . . . . . . . 11
|
| 10 | 9 | rexbidva 2502 |
. . . . . . . . . 10
|
| 11 | r19.9rmv 3551 |
. . . . . . . . . . 11
| |
| 12 | 11 | bicomd 141 |
. . . . . . . . . 10
|
| 13 | 10, 12 | sylan9bbr 463 |
. . . . . . . . 9
|
| 14 | 5, 13 | sylan9bbr 463 |
. . . . . . . 8
|
| 15 | velsn 3649 |
. . . . . . . . 9
| |
| 16 | eqcom 2206 |
. . . . . . . . 9
| |
| 17 | 15, 16 | bitr2i 185 |
. . . . . . . 8
|
| 18 | 14, 17 | bitrdi 196 |
. . . . . . 7
|
| 19 | 18 | eqrdv 2202 |
. . . . . 6
|
| 20 | 19 | an32s 568 |
. . . . 5
|
| 21 | 20 | exp31 364 |
. . . 4
|
| 22 | 21 | imdistand 447 |
. . 3
|
| 23 | df-fo 5274 |
. . . 4
| |
| 24 | fof 5492 |
. . . 4
| |
| 25 | 23, 24 | sylbir 135 |
. . 3
|
| 26 | 22, 25 | syl6 33 |
. 2
|
| 27 | 4, 26 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fo 5274 df-fv 5276 |
| This theorem is referenced by: fconst3m 5793 |
| Copyright terms: Public domain | W3C validator |