ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstfvm Unicode version

Theorem fconstfvm 5780
Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 5779. (Contributed by Jim Kingdon, 8-Jan-2019.)
Assertion
Ref Expression
fconstfvm  |-  ( E. y  y  e.  A  ->  ( F : A --> { B }  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B ) ) )
Distinct variable groups:    x, A    x, B    x, F    y, A
Allowed substitution hints:    B( y)    F( y)

Proof of Theorem fconstfvm
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 5407 . . 3  |-  ( F : A --> { B }  ->  F  Fn  A
)
2 fvconst 5750 . . . 4  |-  ( ( F : A --> { B }  /\  x  e.  A
)  ->  ( F `  x )  =  B )
32ralrimiva 2570 . . 3  |-  ( F : A --> { B }  ->  A. x  e.  A  ( F `  x )  =  B )
41, 3jca 306 . 2  |-  ( F : A --> { B }  ->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B ) )
5 fvelrnb 5608 . . . . . . . . 9  |-  ( F  Fn  A  ->  (
w  e.  ran  F  <->  E. z  e.  A  ( F `  z )  =  w ) )
6 fveq2 5558 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
76eqeq1d 2205 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( F `  x
)  =  B  <->  ( F `  z )  =  B ) )
87rspccva 2867 . . . . . . . . . . . 12  |-  ( ( A. x  e.  A  ( F `  x )  =  B  /\  z  e.  A )  ->  ( F `  z )  =  B )
98eqeq1d 2205 . . . . . . . . . . 11  |-  ( ( A. x  e.  A  ( F `  x )  =  B  /\  z  e.  A )  ->  (
( F `  z
)  =  w  <->  B  =  w ) )
109rexbidva 2494 . . . . . . . . . 10  |-  ( A. x  e.  A  ( F `  x )  =  B  ->  ( E. z  e.  A  ( F `  z )  =  w  <->  E. z  e.  A  B  =  w ) )
11 r19.9rmv 3542 . . . . . . . . . . 11  |-  ( E. y  y  e.  A  ->  ( B  =  w  <->  E. z  e.  A  B  =  w )
)
1211bicomd 141 . . . . . . . . . 10  |-  ( E. y  y  e.  A  ->  ( E. z  e.  A  B  =  w  <-> 
B  =  w ) )
1310, 12sylan9bbr 463 . . . . . . . . 9  |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  ( F `  x )  =  B )  ->  ( E. z  e.  A  ( F `  z )  =  w  <->  B  =  w
) )
145, 13sylan9bbr 463 . . . . . . . 8  |-  ( ( ( E. y  y  e.  A  /\  A. x  e.  A  ( F `  x )  =  B )  /\  F  Fn  A )  ->  (
w  e.  ran  F  <->  B  =  w ) )
15 velsn 3639 . . . . . . . . 9  |-  ( w  e.  { B }  <->  w  =  B )
16 eqcom 2198 . . . . . . . . 9  |-  ( w  =  B  <->  B  =  w )
1715, 16bitr2i 185 . . . . . . . 8  |-  ( B  =  w  <->  w  e.  { B } )
1814, 17bitrdi 196 . . . . . . 7  |-  ( ( ( E. y  y  e.  A  /\  A. x  e.  A  ( F `  x )  =  B )  /\  F  Fn  A )  ->  (
w  e.  ran  F  <->  w  e.  { B }
) )
1918eqrdv 2194 . . . . . 6  |-  ( ( ( E. y  y  e.  A  /\  A. x  e.  A  ( F `  x )  =  B )  /\  F  Fn  A )  ->  ran  F  =  { B }
)
2019an32s 568 . . . . 5  |-  ( ( ( E. y  y  e.  A  /\  F  Fn  A )  /\  A. x  e.  A  ( F `  x )  =  B )  ->  ran  F  =  { B }
)
2120exp31 364 . . . 4  |-  ( E. y  y  e.  A  ->  ( F  Fn  A  ->  ( A. x  e.  A  ( F `  x )  =  B  ->  ran  F  =  { B } ) ) )
2221imdistand 447 . . 3  |-  ( E. y  y  e.  A  ->  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B )  ->  ( F  Fn  A  /\  ran  F  =  { B } ) ) )
23 df-fo 5264 . . . 4  |-  ( F : A -onto-> { B } 
<->  ( F  Fn  A  /\  ran  F  =  { B } ) )
24 fof 5480 . . . 4  |-  ( F : A -onto-> { B }  ->  F : A --> { B } )
2523, 24sylbir 135 . . 3  |-  ( ( F  Fn  A  /\  ran  F  =  { B } )  ->  F : A --> { B }
)
2622, 25syl6 33 . 2  |-  ( E. y  y  e.  A  ->  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B )  ->  F : A
--> { B } ) )
274, 26impbid2 143 1  |-  ( E. y  y  e.  A  ->  ( F : A --> { B }  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   {csn 3622   ran crn 4664    Fn wfn 5253   -->wf 5254   -onto->wfo 5256   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266
This theorem is referenced by:  fconst3m  5781
  Copyright terms: Public domain W3C validator