Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fconstfvm | Unicode version |
Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 5725. (Contributed by Jim Kingdon, 8-Jan-2019.) |
Ref | Expression |
---|---|
fconstfvm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5357 | . . 3 | |
2 | fvconst 5696 | . . . 4 | |
3 | 2 | ralrimiva 2548 | . . 3 |
4 | 1, 3 | jca 306 | . 2 |
5 | fvelrnb 5555 | . . . . . . . . 9 | |
6 | fveq2 5507 | . . . . . . . . . . . . . 14 | |
7 | 6 | eqeq1d 2184 | . . . . . . . . . . . . 13 |
8 | 7 | rspccva 2838 | . . . . . . . . . . . 12 |
9 | 8 | eqeq1d 2184 | . . . . . . . . . . 11 |
10 | 9 | rexbidva 2472 | . . . . . . . . . 10 |
11 | r19.9rmv 3512 | . . . . . . . . . . 11 | |
12 | 11 | bicomd 141 | . . . . . . . . . 10 |
13 | 10, 12 | sylan9bbr 463 | . . . . . . . . 9 |
14 | 5, 13 | sylan9bbr 463 | . . . . . . . 8 |
15 | velsn 3606 | . . . . . . . . 9 | |
16 | eqcom 2177 | . . . . . . . . 9 | |
17 | 15, 16 | bitr2i 185 | . . . . . . . 8 |
18 | 14, 17 | bitrdi 196 | . . . . . . 7 |
19 | 18 | eqrdv 2173 | . . . . . 6 |
20 | 19 | an32s 568 | . . . . 5 |
21 | 20 | exp31 364 | . . . 4 |
22 | 21 | imdistand 447 | . . 3 |
23 | df-fo 5214 | . . . 4 | |
24 | fof 5430 | . . . 4 | |
25 | 23, 24 | sylbir 135 | . . 3 |
26 | 22, 25 | syl6 33 | . 2 |
27 | 4, 26 | impbid2 143 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wex 1490 wcel 2146 wral 2453 wrex 2454 csn 3589 crn 4621 wfn 5203 wf 5204 wfo 5206 cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fo 5214 df-fv 5216 |
This theorem is referenced by: fconst3m 5727 |
Copyright terms: Public domain | W3C validator |