Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fconstfvm | Unicode version |
Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 5681. (Contributed by Jim Kingdon, 8-Jan-2019.) |
Ref | Expression |
---|---|
fconstfvm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5316 | . . 3 | |
2 | fvconst 5652 | . . . 4 | |
3 | 2 | ralrimiva 2530 | . . 3 |
4 | 1, 3 | jca 304 | . 2 |
5 | fvelrnb 5513 | . . . . . . . . 9 | |
6 | fveq2 5465 | . . . . . . . . . . . . . 14 | |
7 | 6 | eqeq1d 2166 | . . . . . . . . . . . . 13 |
8 | 7 | rspccva 2815 | . . . . . . . . . . . 12 |
9 | 8 | eqeq1d 2166 | . . . . . . . . . . 11 |
10 | 9 | rexbidva 2454 | . . . . . . . . . 10 |
11 | r19.9rmv 3485 | . . . . . . . . . . 11 | |
12 | 11 | bicomd 140 | . . . . . . . . . 10 |
13 | 10, 12 | sylan9bbr 459 | . . . . . . . . 9 |
14 | 5, 13 | sylan9bbr 459 | . . . . . . . 8 |
15 | velsn 3577 | . . . . . . . . 9 | |
16 | eqcom 2159 | . . . . . . . . 9 | |
17 | 15, 16 | bitr2i 184 | . . . . . . . 8 |
18 | 14, 17 | bitrdi 195 | . . . . . . 7 |
19 | 18 | eqrdv 2155 | . . . . . 6 |
20 | 19 | an32s 558 | . . . . 5 |
21 | 20 | exp31 362 | . . . 4 |
22 | 21 | imdistand 444 | . . 3 |
23 | df-fo 5173 | . . . 4 | |
24 | fof 5389 | . . . 4 | |
25 | 23, 24 | sylbir 134 | . . 3 |
26 | 22, 25 | syl6 33 | . 2 |
27 | 4, 26 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wex 1472 wcel 2128 wral 2435 wrex 2436 csn 3560 crn 4584 wfn 5162 wf 5163 wfo 5165 cfv 5167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fo 5173 df-fv 5175 |
This theorem is referenced by: fconst3m 5683 |
Copyright terms: Public domain | W3C validator |