| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fconstfvm | Unicode version | ||
| Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 5814. (Contributed by Jim Kingdon, 8-Jan-2019.) |
| Ref | Expression |
|---|---|
| fconstfvm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5435 |
. . 3
| |
| 2 | fvconst 5785 |
. . . 4
| |
| 3 | 2 | ralrimiva 2580 |
. . 3
|
| 4 | 1, 3 | jca 306 |
. 2
|
| 5 | fvelrnb 5639 |
. . . . . . . . 9
| |
| 6 | fveq2 5589 |
. . . . . . . . . . . . . 14
| |
| 7 | 6 | eqeq1d 2215 |
. . . . . . . . . . . . 13
|
| 8 | 7 | rspccva 2880 |
. . . . . . . . . . . 12
|
| 9 | 8 | eqeq1d 2215 |
. . . . . . . . . . 11
|
| 10 | 9 | rexbidva 2504 |
. . . . . . . . . 10
|
| 11 | r19.9rmv 3556 |
. . . . . . . . . . 11
| |
| 12 | 11 | bicomd 141 |
. . . . . . . . . 10
|
| 13 | 10, 12 | sylan9bbr 463 |
. . . . . . . . 9
|
| 14 | 5, 13 | sylan9bbr 463 |
. . . . . . . 8
|
| 15 | velsn 3655 |
. . . . . . . . 9
| |
| 16 | eqcom 2208 |
. . . . . . . . 9
| |
| 17 | 15, 16 | bitr2i 185 |
. . . . . . . 8
|
| 18 | 14, 17 | bitrdi 196 |
. . . . . . 7
|
| 19 | 18 | eqrdv 2204 |
. . . . . 6
|
| 20 | 19 | an32s 568 |
. . . . 5
|
| 21 | 20 | exp31 364 |
. . . 4
|
| 22 | 21 | imdistand 447 |
. . 3
|
| 23 | df-fo 5286 |
. . . 4
| |
| 24 | fof 5510 |
. . . 4
| |
| 25 | 23, 24 | sylbir 135 |
. . 3
|
| 26 | 22, 25 | syl6 33 |
. 2
|
| 27 | 4, 26 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fo 5286 df-fv 5288 |
| This theorem is referenced by: fconst3m 5816 |
| Copyright terms: Public domain | W3C validator |