Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fconstfvm | Unicode version |
Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 5702. (Contributed by Jim Kingdon, 8-Jan-2019.) |
Ref | Expression |
---|---|
fconstfvm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5337 | . . 3 | |
2 | fvconst 5673 | . . . 4 | |
3 | 2 | ralrimiva 2539 | . . 3 |
4 | 1, 3 | jca 304 | . 2 |
5 | fvelrnb 5534 | . . . . . . . . 9 | |
6 | fveq2 5486 | . . . . . . . . . . . . . 14 | |
7 | 6 | eqeq1d 2174 | . . . . . . . . . . . . 13 |
8 | 7 | rspccva 2829 | . . . . . . . . . . . 12 |
9 | 8 | eqeq1d 2174 | . . . . . . . . . . 11 |
10 | 9 | rexbidva 2463 | . . . . . . . . . 10 |
11 | r19.9rmv 3500 | . . . . . . . . . . 11 | |
12 | 11 | bicomd 140 | . . . . . . . . . 10 |
13 | 10, 12 | sylan9bbr 459 | . . . . . . . . 9 |
14 | 5, 13 | sylan9bbr 459 | . . . . . . . 8 |
15 | velsn 3593 | . . . . . . . . 9 | |
16 | eqcom 2167 | . . . . . . . . 9 | |
17 | 15, 16 | bitr2i 184 | . . . . . . . 8 |
18 | 14, 17 | bitrdi 195 | . . . . . . 7 |
19 | 18 | eqrdv 2163 | . . . . . 6 |
20 | 19 | an32s 558 | . . . . 5 |
21 | 20 | exp31 362 | . . . 4 |
22 | 21 | imdistand 444 | . . 3 |
23 | df-fo 5194 | . . . 4 | |
24 | fof 5410 | . . . 4 | |
25 | 23, 24 | sylbir 134 | . . 3 |
26 | 22, 25 | syl6 33 | . 2 |
27 | 4, 26 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wral 2444 wrex 2445 csn 3576 crn 4605 wfn 5183 wf 5184 wfo 5186 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 |
This theorem is referenced by: fconst3m 5704 |
Copyright terms: Public domain | W3C validator |