Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fconstfvm | Unicode version |
Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 5713. (Contributed by Jim Kingdon, 8-Jan-2019.) |
Ref | Expression |
---|---|
fconstfvm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5347 | . . 3 | |
2 | fvconst 5684 | . . . 4 | |
3 | 2 | ralrimiva 2543 | . . 3 |
4 | 1, 3 | jca 304 | . 2 |
5 | fvelrnb 5544 | . . . . . . . . 9 | |
6 | fveq2 5496 | . . . . . . . . . . . . . 14 | |
7 | 6 | eqeq1d 2179 | . . . . . . . . . . . . 13 |
8 | 7 | rspccva 2833 | . . . . . . . . . . . 12 |
9 | 8 | eqeq1d 2179 | . . . . . . . . . . 11 |
10 | 9 | rexbidva 2467 | . . . . . . . . . 10 |
11 | r19.9rmv 3506 | . . . . . . . . . . 11 | |
12 | 11 | bicomd 140 | . . . . . . . . . 10 |
13 | 10, 12 | sylan9bbr 460 | . . . . . . . . 9 |
14 | 5, 13 | sylan9bbr 460 | . . . . . . . 8 |
15 | velsn 3600 | . . . . . . . . 9 | |
16 | eqcom 2172 | . . . . . . . . 9 | |
17 | 15, 16 | bitr2i 184 | . . . . . . . 8 |
18 | 14, 17 | bitrdi 195 | . . . . . . 7 |
19 | 18 | eqrdv 2168 | . . . . . 6 |
20 | 19 | an32s 563 | . . . . 5 |
21 | 20 | exp31 362 | . . . 4 |
22 | 21 | imdistand 445 | . . 3 |
23 | df-fo 5204 | . . . 4 | |
24 | fof 5420 | . . . 4 | |
25 | 23, 24 | sylbir 134 | . . 3 |
26 | 22, 25 | syl6 33 | . 2 |
27 | 4, 26 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 wral 2448 wrex 2449 csn 3583 crn 4612 wfn 5193 wf 5194 wfo 5196 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 |
This theorem is referenced by: fconst3m 5715 |
Copyright terms: Public domain | W3C validator |