Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lbzbi | Unicode version |
Description: If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
lbzbi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . . 3 | |
2 | nfre1 2509 | . . 3 | |
3 | btwnz 9310 | . . . . . . 7 | |
4 | 3 | simpld 111 | . . . . . 6 |
5 | ssel2 3137 | . . . . . . . . . . . . . . . . . . . . . . . . . 26 | |
6 | zre 9195 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 | |
7 | ltleletr 7980 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 | |
8 | 6, 7 | syl3an1 1261 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 |
9 | 8 | expd 256 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27 |
10 | 9 | 3expia 1195 | . . . . . . . . . . . . . . . . . . . . . . . . . 26 |
11 | 5, 10 | syl5 32 | . . . . . . . . . . . . . . . . . . . . . . . . 25 |
12 | 11 | expdimp 257 | . . . . . . . . . . . . . . . . . . . . . . . 24 |
13 | 12 | com23 78 | . . . . . . . . . . . . . . . . . . . . . . 23 |
14 | 13 | imp 123 | . . . . . . . . . . . . . . . . . . . . . 22 |
15 | 14 | ralrimiv 2538 | . . . . . . . . . . . . . . . . . . . . 21 |
16 | ralim 2525 | . . . . . . . . . . . . . . . . . . . . 21 | |
17 | 15, 16 | syl 14 | . . . . . . . . . . . . . . . . . . . 20 |
18 | 17 | ex 114 | . . . . . . . . . . . . . . . . . . 19 |
19 | 18 | anasss 397 | . . . . . . . . . . . . . . . . . 18 |
20 | 19 | expcom 115 | . . . . . . . . . . . . . . . . 17 |
21 | 20 | com23 78 | . . . . . . . . . . . . . . . 16 |
22 | 21 | imp 123 | . . . . . . . . . . . . . . 15 |
23 | 22 | imdistand 444 | . . . . . . . . . . . . . 14 |
24 | breq1 3985 | . . . . . . . . . . . . . . . 16 | |
25 | 24 | ralbidv 2466 | . . . . . . . . . . . . . . 15 |
26 | 25 | rspcev 2830 | . . . . . . . . . . . . . 14 |
27 | 23, 26 | syl6 33 | . . . . . . . . . . . . 13 |
28 | 27 | ex 114 | . . . . . . . . . . . 12 |
29 | 28 | com23 78 | . . . . . . . . . . 11 |
30 | 29 | ancomsd 267 | . . . . . . . . . 10 |
31 | 30 | expdimp 257 | . . . . . . . . 9 |
32 | 31 | rexlimdv 2582 | . . . . . . . 8 |
33 | 32 | anasss 397 | . . . . . . 7 |
34 | 33 | expcom 115 | . . . . . 6 |
35 | 4, 34 | mpdi 43 | . . . . 5 |
36 | 35 | ex 114 | . . . 4 |
37 | 36 | com23 78 | . . 3 |
38 | 1, 2, 37 | rexlimd 2580 | . 2 |
39 | zssre 9198 | . . 3 | |
40 | ssrexv 3207 | . . 3 | |
41 | 39, 40 | ax-mp 5 | . 2 |
42 | 38, 41 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wcel 2136 wral 2444 wrex 2445 wss 3116 class class class wbr 3982 cr 7752 clt 7933 cle 7934 cz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 ax-arch 7872 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-z 9192 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |