| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lbzbi | Unicode version | ||
| Description: If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.) | 
| Ref | Expression | 
|---|---|
| lbzbi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | 
. . 3
 | |
| 2 | nfre1 2540 | 
. . 3
 | |
| 3 | btwnz 9445 | 
. . . . . . 7
 | |
| 4 | 3 | simpld 112 | 
. . . . . 6
 | 
| 5 | ssel2 3178 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
 | |
| 6 | zre 9330 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
 | |
| 7 | ltleletr 8108 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
 | |
| 8 | 6, 7 | syl3an1 1282 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
 | 
| 9 | 8 | expd 258 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
 | 
| 10 | 9 | 3expia 1207 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
 | 
| 11 | 5, 10 | syl5 32 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
 | 
| 12 | 11 | expdimp 259 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
 | 
| 13 | 12 | com23 78 | 
. . . . . . . . . . . . . . . . . . . . . . 23
 | 
| 14 | 13 | imp 124 | 
. . . . . . . . . . . . . . . . . . . . . 22
 | 
| 15 | 14 | ralrimiv 2569 | 
. . . . . . . . . . . . . . . . . . . . 21
 | 
| 16 | ralim 2556 | 
. . . . . . . . . . . . . . . . . . . . 21
 | |
| 17 | 15, 16 | syl 14 | 
. . . . . . . . . . . . . . . . . . . 20
 | 
| 18 | 17 | ex 115 | 
. . . . . . . . . . . . . . . . . . 19
 | 
| 19 | 18 | anasss 399 | 
. . . . . . . . . . . . . . . . . 18
 | 
| 20 | 19 | expcom 116 | 
. . . . . . . . . . . . . . . . 17
 | 
| 21 | 20 | com23 78 | 
. . . . . . . . . . . . . . . 16
 | 
| 22 | 21 | imp 124 | 
. . . . . . . . . . . . . . 15
 | 
| 23 | 22 | imdistand 447 | 
. . . . . . . . . . . . . 14
 | 
| 24 | breq1 4036 | 
. . . . . . . . . . . . . . . 16
 | |
| 25 | 24 | ralbidv 2497 | 
. . . . . . . . . . . . . . 15
 | 
| 26 | 25 | rspcev 2868 | 
. . . . . . . . . . . . . 14
 | 
| 27 | 23, 26 | syl6 33 | 
. . . . . . . . . . . . 13
 | 
| 28 | 27 | ex 115 | 
. . . . . . . . . . . 12
 | 
| 29 | 28 | com23 78 | 
. . . . . . . . . . 11
 | 
| 30 | 29 | ancomsd 269 | 
. . . . . . . . . 10
 | 
| 31 | 30 | expdimp 259 | 
. . . . . . . . 9
 | 
| 32 | 31 | rexlimdv 2613 | 
. . . . . . . 8
 | 
| 33 | 32 | anasss 399 | 
. . . . . . 7
 | 
| 34 | 33 | expcom 116 | 
. . . . . 6
 | 
| 35 | 4, 34 | mpdi 43 | 
. . . . 5
 | 
| 36 | 35 | ex 115 | 
. . . 4
 | 
| 37 | 36 | com23 78 | 
. . 3
 | 
| 38 | 1, 2, 37 | rexlimd 2611 | 
. 2
 | 
| 39 | zssre 9333 | 
. . 3
 | |
| 40 | ssrexv 3248 | 
. . 3
 | |
| 41 | 39, 40 | ax-mp 5 | 
. 2
 | 
| 42 | 38, 41 | impbid1 142 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 ax-arch 7998 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-z 9327 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |