ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lbzbi Unicode version

Theorem lbzbi 9605
Description: If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
lbzbi  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  <->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
Distinct variable group:    x, A, y

Proof of Theorem lbzbi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1528 . . 3  |-  F/ x  A  C_  RR
2 nfre1 2520 . . 3  |-  F/ x E. x  e.  ZZ  A. y  e.  A  x  <_  y
3 btwnz 9361 . . . . . . 7  |-  ( x  e.  RR  ->  ( E. z  e.  ZZ  z  <  x  /\  E. z  e.  ZZ  x  <  z ) )
43simpld 112 . . . . . 6  |-  ( x  e.  RR  ->  E. z  e.  ZZ  z  <  x
)
5 ssel2 3150 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  C_  RR  /\  y  e.  A )  ->  y  e.  RR )
6 zre 9246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( z  e.  ZZ  ->  z  e.  RR )
7 ltleletr 8029 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( z  e.  RR  /\  x  e.  RR  /\  y  e.  RR )  ->  (
( z  <  x  /\  x  <_  y )  ->  z  <_  y
) )
86, 7syl3an1 1271 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  e.  ZZ  /\  x  e.  RR  /\  y  e.  RR )  ->  (
( z  <  x  /\  x  <_  y )  ->  z  <_  y
) )
98expd 258 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( z  e.  ZZ  /\  x  e.  RR  /\  y  e.  RR )  ->  (
z  <  x  ->  ( x  <_  y  ->  z  <_  y ) ) )
1093expia 1205 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( z  e.  ZZ  /\  x  e.  RR )  ->  ( y  e.  RR  ->  ( z  <  x  ->  ( x  <_  y  ->  z  <_  y )
) ) )
115, 10syl5 32 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( z  e.  ZZ  /\  x  e.  RR )  ->  ( ( A  C_  RR  /\  y  e.  A
)  ->  ( z  <  x  ->  ( x  <_  y  ->  z  <_  y ) ) ) )
1211expdimp 259 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  ->  ( y  e.  A  ->  ( z  <  x  ->  ( x  <_  y  ->  z  <_  y ) ) ) )
1312com23 78 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  ->  ( z  < 
x  ->  ( y  e.  A  ->  ( x  <_  y  ->  z  <_  y ) ) ) )
1413imp 124 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  /\  z  <  x )  ->  (
y  e.  A  -> 
( x  <_  y  ->  z  <_  y )
) )
1514ralrimiv 2549 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  /\  z  <  x )  ->  A. y  e.  A  ( x  <_  y  ->  z  <_  y ) )
16 ralim 2536 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. y  e.  A  (
x  <_  y  ->  z  <_  y )  -> 
( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) )
1715, 16syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  /\  z  <  x )  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) )
1817ex 115 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  ->  ( z  < 
x  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) )
1918anasss 399 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  ( x  e.  RR  /\  A  C_  RR )
)  ->  ( z  <  x  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) )
2019expcom 116 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( z  e.  ZZ  ->  ( z  <  x  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) ) )
2120com23 78 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( z  <  x  ->  ( z  e.  ZZ  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) ) )
2221imp 124 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  z  <  x )  ->  ( z  e.  ZZ  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) )
2322imdistand 447 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  z  <  x )  ->  ( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  (
z  e.  ZZ  /\  A. y  e.  A  z  <_  y ) ) )
24 breq1 4003 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
x  <_  y  <->  z  <_  y ) )
2524ralbidv 2477 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  ( A. y  e.  A  x  <_  y  <->  A. y  e.  A  z  <_  y ) )
2625rspcev 2841 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ZZ  /\  A. y  e.  A  z  <_  y )  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y )
2723, 26syl6 33 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  z  <  x )  ->  ( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) )
2827ex 115 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( z  <  x  ->  ( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
2928com23 78 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  ( z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
3029ancomsd 269 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( ( A. y  e.  A  x  <_  y  /\  z  e.  ZZ )  ->  ( z  < 
x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
3130expdimp 259 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  A. y  e.  A  x  <_  y )  -> 
( z  e.  ZZ  ->  ( z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) ) )
3231rexlimdv 2593 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  A. y  e.  A  x  <_  y )  -> 
( E. z  e.  ZZ  z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
3332anasss 399 . . . . . . 7  |-  ( ( x  e.  RR  /\  ( A  C_  RR  /\  A. y  e.  A  x  <_  y ) )  ->  ( E. z  e.  ZZ  z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
3433expcom 116 . . . . . 6  |-  ( ( A  C_  RR  /\  A. y  e.  A  x  <_  y )  ->  (
x  e.  RR  ->  ( E. z  e.  ZZ  z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
354, 34mpdi 43 . . . . 5  |-  ( ( A  C_  RR  /\  A. y  e.  A  x  <_  y )  ->  (
x  e.  RR  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
3635ex 115 . . . 4  |-  ( A 
C_  RR  ->  ( A. y  e.  A  x  <_  y  ->  ( x  e.  RR  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
3736com23 78 . . 3  |-  ( A 
C_  RR  ->  ( x  e.  RR  ->  ( A. y  e.  A  x  <_  y  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
381, 2, 37rexlimd 2591 . 2  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) )
39 zssre 9249 . . 3  |-  ZZ  C_  RR
40 ssrexv 3220 . . 3  |-  ( ZZ  C_  RR  ->  ( E. x  e.  ZZ  A. y  e.  A  x  <_  y  ->  E. x  e.  RR  A. y  e.  A  x  <_  y ) )
4139, 40ax-mp 5 . 2  |-  ( E. x  e.  ZZ  A. y  e.  A  x  <_  y  ->  E. x  e.  RR  A. y  e.  A  x  <_  y
)
4238, 41impbid1 142 1  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  <->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3129   class class class wbr 4000   RRcr 7801    < clt 7982    <_ cle 7983   ZZcz 9242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-z 9243
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator