ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lbzbi Unicode version

Theorem lbzbi 9376
Description: If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
lbzbi  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  <->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
Distinct variable group:    x, A, y

Proof of Theorem lbzbi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1493 . . 3  |-  F/ x  A  C_  RR
2 nfre1 2453 . . 3  |-  F/ x E. x  e.  ZZ  A. y  e.  A  x  <_  y
3 btwnz 9138 . . . . . . 7  |-  ( x  e.  RR  ->  ( E. z  e.  ZZ  z  <  x  /\  E. z  e.  ZZ  x  <  z ) )
43simpld 111 . . . . . 6  |-  ( x  e.  RR  ->  E. z  e.  ZZ  z  <  x
)
5 ssel2 3062 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  C_  RR  /\  y  e.  A )  ->  y  e.  RR )
6 zre 9026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( z  e.  ZZ  ->  z  e.  RR )
7 ltleletr 7814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( z  e.  RR  /\  x  e.  RR  /\  y  e.  RR )  ->  (
( z  <  x  /\  x  <_  y )  ->  z  <_  y
) )
86, 7syl3an1 1234 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  e.  ZZ  /\  x  e.  RR  /\  y  e.  RR )  ->  (
( z  <  x  /\  x  <_  y )  ->  z  <_  y
) )
98expd 256 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( z  e.  ZZ  /\  x  e.  RR  /\  y  e.  RR )  ->  (
z  <  x  ->  ( x  <_  y  ->  z  <_  y ) ) )
1093expia 1168 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( z  e.  ZZ  /\  x  e.  RR )  ->  ( y  e.  RR  ->  ( z  <  x  ->  ( x  <_  y  ->  z  <_  y )
) ) )
115, 10syl5 32 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( z  e.  ZZ  /\  x  e.  RR )  ->  ( ( A  C_  RR  /\  y  e.  A
)  ->  ( z  <  x  ->  ( x  <_  y  ->  z  <_  y ) ) ) )
1211expdimp 257 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  ->  ( y  e.  A  ->  ( z  <  x  ->  ( x  <_  y  ->  z  <_  y ) ) ) )
1312com23 78 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  ->  ( z  < 
x  ->  ( y  e.  A  ->  ( x  <_  y  ->  z  <_  y ) ) ) )
1413imp 123 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  /\  z  <  x )  ->  (
y  e.  A  -> 
( x  <_  y  ->  z  <_  y )
) )
1514ralrimiv 2481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  /\  z  <  x )  ->  A. y  e.  A  ( x  <_  y  ->  z  <_  y ) )
16 ralim 2468 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. y  e.  A  (
x  <_  y  ->  z  <_  y )  -> 
( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) )
1715, 16syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  /\  z  <  x )  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) )
1817ex 114 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  ->  ( z  < 
x  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) )
1918anasss 396 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  ( x  e.  RR  /\  A  C_  RR )
)  ->  ( z  <  x  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) )
2019expcom 115 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( z  e.  ZZ  ->  ( z  <  x  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) ) )
2120com23 78 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( z  <  x  ->  ( z  e.  ZZ  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) ) )
2221imp 123 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  z  <  x )  ->  ( z  e.  ZZ  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) )
2322imdistand 443 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  z  <  x )  ->  ( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  (
z  e.  ZZ  /\  A. y  e.  A  z  <_  y ) ) )
24 breq1 3902 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
x  <_  y  <->  z  <_  y ) )
2524ralbidv 2414 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  ( A. y  e.  A  x  <_  y  <->  A. y  e.  A  z  <_  y ) )
2625rspcev 2763 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ZZ  /\  A. y  e.  A  z  <_  y )  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y )
2723, 26syl6 33 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  z  <  x )  ->  ( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) )
2827ex 114 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( z  <  x  ->  ( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
2928com23 78 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  ( z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
3029ancomsd 267 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( ( A. y  e.  A  x  <_  y  /\  z  e.  ZZ )  ->  ( z  < 
x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
3130expdimp 257 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  A. y  e.  A  x  <_  y )  -> 
( z  e.  ZZ  ->  ( z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) ) )
3231rexlimdv 2525 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  A. y  e.  A  x  <_  y )  -> 
( E. z  e.  ZZ  z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
3332anasss 396 . . . . . . 7  |-  ( ( x  e.  RR  /\  ( A  C_  RR  /\  A. y  e.  A  x  <_  y ) )  ->  ( E. z  e.  ZZ  z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
3433expcom 115 . . . . . 6  |-  ( ( A  C_  RR  /\  A. y  e.  A  x  <_  y )  ->  (
x  e.  RR  ->  ( E. z  e.  ZZ  z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
354, 34mpdi 43 . . . . 5  |-  ( ( A  C_  RR  /\  A. y  e.  A  x  <_  y )  ->  (
x  e.  RR  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
3635ex 114 . . . 4  |-  ( A 
C_  RR  ->  ( A. y  e.  A  x  <_  y  ->  ( x  e.  RR  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
3736com23 78 . . 3  |-  ( A 
C_  RR  ->  ( x  e.  RR  ->  ( A. y  e.  A  x  <_  y  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
381, 2, 37rexlimd 2523 . 2  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) )
39 zssre 9029 . . 3  |-  ZZ  C_  RR
40 ssrexv 3132 . . 3  |-  ( ZZ  C_  RR  ->  ( E. x  e.  ZZ  A. y  e.  A  x  <_  y  ->  E. x  e.  RR  A. y  e.  A  x  <_  y ) )
4139, 40ax-mp 5 . 2  |-  ( E. x  e.  ZZ  A. y  e.  A  x  <_  y  ->  E. x  e.  RR  A. y  e.  A  x  <_  y
)
4238, 41impbid1 141 1  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  <->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 947    e. wcel 1465   A.wral 2393   E.wrex 2394    C_ wss 3041   class class class wbr 3899   RRcr 7587    < clt 7768    <_ cle 7769   ZZcz 9022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-ltadd 7704  ax-arch 7707
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-z 9023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator