ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lbzbi Unicode version

Theorem lbzbi 9707
Description: If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
lbzbi  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  <->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
Distinct variable group:    x, A, y

Proof of Theorem lbzbi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1542 . . 3  |-  F/ x  A  C_  RR
2 nfre1 2540 . . 3  |-  F/ x E. x  e.  ZZ  A. y  e.  A  x  <_  y
3 btwnz 9462 . . . . . . 7  |-  ( x  e.  RR  ->  ( E. z  e.  ZZ  z  <  x  /\  E. z  e.  ZZ  x  <  z ) )
43simpld 112 . . . . . 6  |-  ( x  e.  RR  ->  E. z  e.  ZZ  z  <  x
)
5 ssel2 3179 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  C_  RR  /\  y  e.  A )  ->  y  e.  RR )
6 zre 9347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( z  e.  ZZ  ->  z  e.  RR )
7 ltleletr 8125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( z  e.  RR  /\  x  e.  RR  /\  y  e.  RR )  ->  (
( z  <  x  /\  x  <_  y )  ->  z  <_  y
) )
86, 7syl3an1 1282 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  e.  ZZ  /\  x  e.  RR  /\  y  e.  RR )  ->  (
( z  <  x  /\  x  <_  y )  ->  z  <_  y
) )
98expd 258 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( z  e.  ZZ  /\  x  e.  RR  /\  y  e.  RR )  ->  (
z  <  x  ->  ( x  <_  y  ->  z  <_  y ) ) )
1093expia 1207 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( z  e.  ZZ  /\  x  e.  RR )  ->  ( y  e.  RR  ->  ( z  <  x  ->  ( x  <_  y  ->  z  <_  y )
) ) )
115, 10syl5 32 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( z  e.  ZZ  /\  x  e.  RR )  ->  ( ( A  C_  RR  /\  y  e.  A
)  ->  ( z  <  x  ->  ( x  <_  y  ->  z  <_  y ) ) ) )
1211expdimp 259 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  ->  ( y  e.  A  ->  ( z  <  x  ->  ( x  <_  y  ->  z  <_  y ) ) ) )
1312com23 78 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  ->  ( z  < 
x  ->  ( y  e.  A  ->  ( x  <_  y  ->  z  <_  y ) ) ) )
1413imp 124 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  /\  z  <  x )  ->  (
y  e.  A  -> 
( x  <_  y  ->  z  <_  y )
) )
1514ralrimiv 2569 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  /\  z  <  x )  ->  A. y  e.  A  ( x  <_  y  ->  z  <_  y ) )
16 ralim 2556 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. y  e.  A  (
x  <_  y  ->  z  <_  y )  -> 
( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) )
1715, 16syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  /\  z  <  x )  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) )
1817ex 115 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  e.  ZZ  /\  x  e.  RR )  /\  A  C_  RR )  ->  ( z  < 
x  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) )
1918anasss 399 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  ( x  e.  RR  /\  A  C_  RR )
)  ->  ( z  <  x  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) )
2019expcom 116 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( z  e.  ZZ  ->  ( z  <  x  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) ) )
2120com23 78 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( z  <  x  ->  ( z  e.  ZZ  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) ) )
2221imp 124 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  z  <  x )  ->  ( z  e.  ZZ  ->  ( A. y  e.  A  x  <_  y  ->  A. y  e.  A  z  <_  y ) ) )
2322imdistand 447 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  z  <  x )  ->  ( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  (
z  e.  ZZ  /\  A. y  e.  A  z  <_  y ) ) )
24 breq1 4037 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
x  <_  y  <->  z  <_  y ) )
2524ralbidv 2497 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  ( A. y  e.  A  x  <_  y  <->  A. y  e.  A  z  <_  y ) )
2625rspcev 2868 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ZZ  /\  A. y  e.  A  z  <_  y )  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y )
2723, 26syl6 33 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  z  <  x )  ->  ( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) )
2827ex 115 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( z  <  x  ->  ( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
2928com23 78 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( ( z  e.  ZZ  /\  A. y  e.  A  x  <_  y )  ->  ( z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
3029ancomsd 269 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  A  C_  RR )  -> 
( ( A. y  e.  A  x  <_  y  /\  z  e.  ZZ )  ->  ( z  < 
x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
3130expdimp 259 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  A. y  e.  A  x  <_  y )  -> 
( z  e.  ZZ  ->  ( z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) ) )
3231rexlimdv 2613 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  A  C_  RR )  /\  A. y  e.  A  x  <_  y )  -> 
( E. z  e.  ZZ  z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
3332anasss 399 . . . . . . 7  |-  ( ( x  e.  RR  /\  ( A  C_  RR  /\  A. y  e.  A  x  <_  y ) )  ->  ( E. z  e.  ZZ  z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
3433expcom 116 . . . . . 6  |-  ( ( A  C_  RR  /\  A. y  e.  A  x  <_  y )  ->  (
x  e.  RR  ->  ( E. z  e.  ZZ  z  <  x  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
354, 34mpdi 43 . . . . 5  |-  ( ( A  C_  RR  /\  A. y  e.  A  x  <_  y )  ->  (
x  e.  RR  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
3635ex 115 . . . 4  |-  ( A 
C_  RR  ->  ( A. y  e.  A  x  <_  y  ->  ( x  e.  RR  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
3736com23 78 . . 3  |-  ( A 
C_  RR  ->  ( x  e.  RR  ->  ( A. y  e.  A  x  <_  y  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) ) )
381, 2, 37rexlimd 2611 . 2  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  ->  E. x  e.  ZZ  A. y  e.  A  x  <_  y
) )
39 zssre 9350 . . 3  |-  ZZ  C_  RR
40 ssrexv 3249 . . 3  |-  ( ZZ  C_  RR  ->  ( E. x  e.  ZZ  A. y  e.  A  x  <_  y  ->  E. x  e.  RR  A. y  e.  A  x  <_  y ) )
4139, 40ax-mp 5 . 2  |-  ( E. x  e.  ZZ  A. y  e.  A  x  <_  y  ->  E. x  e.  RR  A. y  e.  A  x  <_  y
)
4238, 41impbid1 142 1  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  x  <_  y  <->  E. x  e.  ZZ  A. y  e.  A  x  <_  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   class class class wbr 4034   RRcr 7895    < clt 8078    <_ cle 8079   ZZcz 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-z 9344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator