ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divgcdodd Unicode version

Theorem divgcdodd 12097
Description: Either  A  /  ( A  gcd  B ) is odd or  B  /  ( A  gcd  B ) is odd. (Contributed by Scott Fenton, 19-Apr-2014.)
Assertion
Ref Expression
divgcdodd  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( -.  2  ||  ( A  /  ( A  gcd  B ) )  \/  -.  2  ||  ( B  /  ( A  gcd  B ) ) ) )

Proof of Theorem divgcdodd
StepHypRef Expression
1 n2dvds1 11871 . . . 4  |-  -.  2  ||  1
2 2z 9240 . . . . . . 7  |-  2  e.  ZZ
3 nnz 9231 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  e.  ZZ )
4 nnz 9231 . . . . . . . . . 10  |-  ( B  e.  NN  ->  B  e.  ZZ )
5 gcddvds 11918 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
63, 4, 5syl2an 287 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
76simpld 111 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  ||  A )
8 gcdnncl 11922 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
98nnzd 9333 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  ZZ )
108nnne0d 8923 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  =/=  0 )
113adantr 274 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  A  e.  ZZ )
12 dvdsval2 11752 . . . . . . . . 9  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  A  e.  ZZ )  ->  (
( A  gcd  B
)  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
139, 10, 11, 12syl3anc 1233 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
147, 13mpbid 146 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  /  ( A  gcd  B ) )  e.  ZZ )
156simprd 113 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  ||  B )
164adantl 275 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  B  e.  ZZ )
17 dvdsval2 11752 . . . . . . . . 9  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  B  e.  ZZ )  ->  (
( A  gcd  B
)  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  ZZ ) )
189, 10, 16, 17syl3anc 1233 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  ZZ ) )
1915, 18mpbid 146 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  e.  ZZ )
20 dvdsgcdb 11968 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  ( A  /  ( A  gcd  B ) )  e.  ZZ  /\  ( B  /  ( A  gcd  B ) )  e.  ZZ )  ->  ( ( 2 
||  ( A  / 
( A  gcd  B
) )  /\  2  ||  ( B  /  ( A  gcd  B ) ) )  <->  2  ||  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) ) ) )
212, 14, 19, 20mp3an2i 1337 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( 2  ||  ( A  /  ( A  gcd  B ) )  /\  2  ||  ( B  /  ( A  gcd  B ) ) )  <->  2  ||  ( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) ) ) )
22 gcddiv 11974 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( A  gcd  B )  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )  ->  ( ( A  gcd  B )  / 
( A  gcd  B
) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) ) )
2311, 16, 8, 6, 22syl31anc 1236 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  /  ( A  gcd  B ) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) ) )
248nncnd 8892 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  CC )
258nnap0d 8924 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
) #  0 )
2624, 25dividapd 8703 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  /  ( A  gcd  B ) )  =  1 )
2723, 26eqtr3d 2205 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 )
2827breq2d 4001 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( 2  ||  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  <->  2  ||  1 ) )
2928biimpd 143 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( 2  ||  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  -> 
2  ||  1 ) )
3021, 29sylbid 149 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( 2  ||  ( A  /  ( A  gcd  B ) )  /\  2  ||  ( B  /  ( A  gcd  B ) ) )  -> 
2  ||  1 ) )
3130expdimp 257 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( 2  ||  ( B  /  ( A  gcd  B ) )  ->  2  ||  1 ) )
321, 31mtoi 659 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  -.  2  ||  ( B  /  ( A  gcd  B ) ) )
3332ex 114 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( 2  ||  ( A  /  ( A  gcd  B ) )  ->  -.  2  ||  ( B  / 
( A  gcd  B
) ) ) )
34 2nn 9039 . . . 4  |-  2  e.  NN
35 dvdsdc 11760 . . . 4  |-  ( ( 2  e.  NN  /\  ( A  /  ( A  gcd  B ) )  e.  ZZ )  -> DECID  2  ||  ( A  /  ( A  gcd  B ) ) )
3634, 14, 35sylancr 412 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  -> DECID  2 
||  ( A  / 
( A  gcd  B
) ) )
37 imordc 892 . . 3  |-  (DECID  2  ||  ( A  /  ( A  gcd  B ) )  ->  ( ( 2 
||  ( A  / 
( A  gcd  B
) )  ->  -.  2  ||  ( B  / 
( A  gcd  B
) ) )  <->  ( -.  2  ||  ( A  / 
( A  gcd  B
) )  \/  -.  2  ||  ( B  / 
( A  gcd  B
) ) ) ) )
3836, 37syl 14 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( 2  ||  ( A  /  ( A  gcd  B ) )  ->  -.  2  ||  ( B  /  ( A  gcd  B ) ) )  <->  ( -.  2  ||  ( A  /  ( A  gcd  B ) )  \/  -.  2  ||  ( B  /  ( A  gcd  B ) ) ) ) )
3933, 38mpbid 146 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( -.  2  ||  ( A  /  ( A  gcd  B ) )  \/  -.  2  ||  ( B  /  ( A  gcd  B ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141    =/= wne 2340   class class class wbr 3989  (class class class)co 5853   0cc0 7774   1c1 7775    / cdiv 8589   NNcn 8878   2c2 8929   ZZcz 9212    || cdvds 11749    gcd cgcd 11897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898
This theorem is referenced by:  pythagtrip  12237
  Copyright terms: Public domain W3C validator