ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divgcdodd Unicode version

Theorem divgcdodd 10902
Description: Either  A  /  ( A  gcd  B ) is odd or  B  /  ( A  gcd  B ) is odd. (Contributed by Scott Fenton, 19-Apr-2014.)
Assertion
Ref Expression
divgcdodd  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( -.  2  ||  ( A  /  ( A  gcd  B ) )  \/  -.  2  ||  ( B  /  ( A  gcd  B ) ) ) )

Proof of Theorem divgcdodd
StepHypRef Expression
1 n2dvds1 10692 . . . 4  |-  -.  2  ||  1
2 2z 8674 . . . . . . 7  |-  2  e.  ZZ
3 nnz 8665 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  e.  ZZ )
4 nnz 8665 . . . . . . . . . 10  |-  ( B  e.  NN  ->  B  e.  ZZ )
5 gcddvds 10735 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
63, 4, 5syl2an 283 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
76simpld 110 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  ||  A )
8 gcdnncl 10739 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
98nnzd 8763 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  ZZ )
108nnne0d 8360 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  =/=  0 )
113adantr 270 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  A  e.  ZZ )
12 dvdsval2 10579 . . . . . . . . 9  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  A  e.  ZZ )  ->  (
( A  gcd  B
)  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
139, 10, 11, 12syl3anc 1170 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
147, 13mpbid 145 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  /  ( A  gcd  B ) )  e.  ZZ )
156simprd 112 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  ||  B )
164adantl 271 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  B  e.  ZZ )
17 dvdsval2 10579 . . . . . . . . 9  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  B  e.  ZZ )  ->  (
( A  gcd  B
)  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  ZZ ) )
189, 10, 16, 17syl3anc 1170 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  ZZ ) )
1915, 18mpbid 145 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  e.  ZZ )
20 dvdsgcdb 10782 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  ( A  /  ( A  gcd  B ) )  e.  ZZ  /\  ( B  /  ( A  gcd  B ) )  e.  ZZ )  ->  ( ( 2 
||  ( A  / 
( A  gcd  B
) )  /\  2  ||  ( B  /  ( A  gcd  B ) ) )  <->  2  ||  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) ) ) )
212, 14, 19, 20mp3an2i 1274 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( 2  ||  ( A  /  ( A  gcd  B ) )  /\  2  ||  ( B  /  ( A  gcd  B ) ) )  <->  2  ||  ( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) ) ) )
22 gcddiv 10788 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( A  gcd  B )  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )  ->  ( ( A  gcd  B )  / 
( A  gcd  B
) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) ) )
2311, 16, 8, 6, 22syl31anc 1173 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  /  ( A  gcd  B ) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) ) )
248nncnd 8330 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  CC )
258nnap0d 8361 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
) #  0 )
2624, 25dividapd 8151 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  /  ( A  gcd  B ) )  =  1 )
2723, 26eqtr3d 2117 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 )
2827breq2d 3823 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( 2  ||  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  <->  2  ||  1 ) )
2928biimpd 142 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( 2  ||  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  -> 
2  ||  1 ) )
3021, 29sylbid 148 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( 2  ||  ( A  /  ( A  gcd  B ) )  /\  2  ||  ( B  /  ( A  gcd  B ) ) )  -> 
2  ||  1 ) )
3130expdimp 255 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( 2  ||  ( B  /  ( A  gcd  B ) )  ->  2  ||  1 ) )
321, 31mtoi 623 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  -.  2  ||  ( B  /  ( A  gcd  B ) ) )
3332ex 113 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( 2  ||  ( A  /  ( A  gcd  B ) )  ->  -.  2  ||  ( B  / 
( A  gcd  B
) ) ) )
34 2nn 8470 . . . 4  |-  2  e.  NN
35 dvdsdc 10584 . . . 4  |-  ( ( 2  e.  NN  /\  ( A  /  ( A  gcd  B ) )  e.  ZZ )  -> DECID  2  ||  ( A  /  ( A  gcd  B ) ) )
3634, 14, 35sylancr 405 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  -> DECID  2 
||  ( A  / 
( A  gcd  B
) ) )
37 imordc 830 . . 3  |-  (DECID  2  ||  ( A  /  ( A  gcd  B ) )  ->  ( ( 2 
||  ( A  / 
( A  gcd  B
) )  ->  -.  2  ||  ( B  / 
( A  gcd  B
) ) )  <->  ( -.  2  ||  ( A  / 
( A  gcd  B
) )  \/  -.  2  ||  ( B  / 
( A  gcd  B
) ) ) ) )
3836, 37syl 14 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( 2  ||  ( A  /  ( A  gcd  B ) )  ->  -.  2  ||  ( B  /  ( A  gcd  B ) ) )  <->  ( -.  2  ||  ( A  /  ( A  gcd  B ) )  \/  -.  2  ||  ( B  /  ( A  gcd  B ) ) ) ) )
3933, 38mpbid 145 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( -.  2  ||  ( A  /  ( A  gcd  B ) )  \/  -.  2  ||  ( B  /  ( A  gcd  B ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 662  DECID wdc 776    = wceq 1285    e. wcel 1434    =/= wne 2249   class class class wbr 3811  (class class class)co 5591   0cc0 7253   1c1 7254    / cdiv 8037   NNcn 8316   2c2 8366   ZZcz 8646    || cdvds 10576    gcd cgcd 10718
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulrcl 7347  ax-addcom 7348  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-1rid 7355  ax-0id 7356  ax-rnegex 7357  ax-precex 7358  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-apti 7363  ax-pre-ltadd 7364  ax-pre-mulgt0 7365  ax-pre-mulext 7366  ax-arch 7367  ax-caucvg 7368
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-ilim 4160  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-frec 6088  df-sup 6586  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-reap 7952  df-ap 7959  df-div 8038  df-inn 8317  df-2 8375  df-3 8376  df-4 8377  df-n0 8566  df-z 8647  df-uz 8915  df-q 9000  df-rp 9030  df-fz 9320  df-fzo 9444  df-fl 9566  df-mod 9619  df-iseq 9741  df-iexp 9792  df-cj 10103  df-re 10104  df-im 10105  df-rsqrt 10258  df-abs 10259  df-dvds 10577  df-gcd 10719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator