Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpinveu | Unicode version |
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.) |
Ref | Expression |
---|---|
grpinveu.b | |
grpinveu.p | |
grpinveu.o |
Ref | Expression |
---|---|
grpinveu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinveu.b | . . . 4 | |
2 | grpinveu.p | . . . 4 | |
3 | grpinveu.o | . . . 4 | |
4 | 1, 2, 3 | grpinvex 12747 | . . 3 |
5 | eqtr3 2195 | . . . . . . . . . . . 12 | |
6 | 1, 2 | grprcan 12770 | . . . . . . . . . . . 12 |
7 | 5, 6 | syl5ib 154 | . . . . . . . . . . 11 |
8 | 7 | 3exp2 1225 | . . . . . . . . . 10 |
9 | 8 | com24 87 | . . . . . . . . 9 |
10 | 9 | imp41 353 | . . . . . . . 8 |
11 | 10 | an32s 568 | . . . . . . 7 |
12 | 11 | expd 258 | . . . . . 6 |
13 | 12 | ralrimdva 2555 | . . . . 5 |
14 | 13 | ancld 325 | . . . 4 |
15 | 14 | reximdva 2577 | . . 3 |
16 | 4, 15 | mpd 13 | . 2 |
17 | oveq1 5872 | . . . 4 | |
18 | 17 | eqeq1d 2184 | . . 3 |
19 | 18 | reu8 2931 | . 2 |
20 | 16, 19 | sylibr 134 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 wceq 1353 wcel 2146 wral 2453 wrex 2454 wreu 2455 cfv 5208 (class class class)co 5865 cbs 12427 cplusg 12491 c0g 12625 cgrp 12737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-inn 8891 df-2 8949 df-ndx 12430 df-slot 12431 df-base 12433 df-plusg 12504 df-0g 12627 df-mgm 12639 df-sgrp 12672 df-mnd 12682 df-grp 12740 |
This theorem is referenced by: grpinvf 12780 grplinv 12782 isgrpinv 12786 |
Copyright terms: Public domain | W3C validator |