| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinveu | Unicode version | ||
| Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpinveu.b |
|
| grpinveu.p |
|
| grpinveu.o |
|
| Ref | Expression |
|---|---|
| grpinveu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinveu.b |
. . . 4
| |
| 2 | grpinveu.p |
. . . 4
| |
| 3 | grpinveu.o |
. . . 4
| |
| 4 | 1, 2, 3 | grpinvex 13342 |
. . 3
|
| 5 | eqtr3 2225 |
. . . . . . . . . . . 12
| |
| 6 | 1, 2 | grprcan 13369 |
. . . . . . . . . . . 12
|
| 7 | 5, 6 | imbitrid 154 |
. . . . . . . . . . 11
|
| 8 | 7 | 3exp2 1228 |
. . . . . . . . . 10
|
| 9 | 8 | com24 87 |
. . . . . . . . 9
|
| 10 | 9 | imp41 353 |
. . . . . . . 8
|
| 11 | 10 | an32s 568 |
. . . . . . 7
|
| 12 | 11 | expd 258 |
. . . . . 6
|
| 13 | 12 | ralrimdva 2586 |
. . . . 5
|
| 14 | 13 | ancld 325 |
. . . 4
|
| 15 | 14 | reximdva 2608 |
. . 3
|
| 16 | 4, 15 | mpd 13 |
. 2
|
| 17 | oveq1 5951 |
. . . 4
| |
| 18 | 17 | eqeq1d 2214 |
. . 3
|
| 19 | 18 | reu8 2969 |
. 2
|
| 20 | 16, 19 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-riota 5899 df-ov 5947 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 |
| This theorem is referenced by: grpinvf 13379 grplinv 13382 isgrpinv 13386 |
| Copyright terms: Public domain | W3C validator |