ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinveu Unicode version

Theorem grpinveu 13485
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinveu.b  |-  B  =  ( Base `  G
)
grpinveu.p  |-  .+  =  ( +g  `  G )
grpinveu.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpinveu  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E! y  e.  B  ( y  .+  X
)  =  .0.  )
Distinct variable groups:    y, B    y, G    y,  .+    y,  .0.    y, X

Proof of Theorem grpinveu
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 grpinveu.b . . . 4  |-  B  =  ( Base `  G
)
2 grpinveu.p . . . 4  |-  .+  =  ( +g  `  G )
3 grpinveu.o . . . 4  |-  .0.  =  ( 0g `  G )
41, 2, 3grpinvex 13457 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E. y  e.  B  ( y  .+  X
)  =  .0.  )
5 eqtr3 2227 . . . . . . . . . . . 12  |-  ( ( ( y  .+  X
)  =  .0.  /\  ( z  .+  X
)  =  .0.  )  ->  ( y  .+  X
)  =  ( z 
.+  X ) )
61, 2grprcan 13484 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( y  e.  B  /\  z  e.  B  /\  X  e.  B
) )  ->  (
( y  .+  X
)  =  ( z 
.+  X )  <->  y  =  z ) )
75, 6imbitrid 154 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( y  e.  B  /\  z  e.  B  /\  X  e.  B
) )  ->  (
( ( y  .+  X )  =  .0. 
/\  ( z  .+  X )  =  .0.  )  ->  y  =  z ) )
873exp2 1228 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  (
y  e.  B  -> 
( z  e.  B  ->  ( X  e.  B  ->  ( ( ( y 
.+  X )  =  .0.  /\  ( z 
.+  X )  =  .0.  )  ->  y  =  z ) ) ) ) )
98com24 87 . . . . . . . . 9  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( z  e.  B  -> 
( y  e.  B  ->  ( ( ( y 
.+  X )  =  .0.  /\  ( z 
.+  X )  =  .0.  )  ->  y  =  z ) ) ) ) )
109imp41 353 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  z  e.  B )  /\  y  e.  B )  ->  (
( ( y  .+  X )  =  .0. 
/\  ( z  .+  X )  =  .0.  )  ->  y  =  z ) )
1110an32s 568 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  y  e.  B )  /\  z  e.  B )  ->  (
( ( y  .+  X )  =  .0. 
/\  ( z  .+  X )  =  .0.  )  ->  y  =  z ) )
1211expd 258 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  B )  /\  y  e.  B )  /\  z  e.  B )  ->  (
( y  .+  X
)  =  .0.  ->  ( ( z  .+  X
)  =  .0.  ->  y  =  z ) ) )
1312ralrimdva 2588 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  y  e.  B
)  ->  ( (
y  .+  X )  =  .0.  ->  A. z  e.  B  ( (
z  .+  X )  =  .0.  ->  y  =  z ) ) )
1413ancld 325 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  y  e.  B
)  ->  ( (
y  .+  X )  =  .0.  ->  ( (
y  .+  X )  =  .0.  /\  A. z  e.  B  ( (
z  .+  X )  =  .0.  ->  y  =  z ) ) ) )
1514reximdva 2610 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( E. y  e.  B  ( y  .+  X )  =  .0. 
->  E. y  e.  B  ( ( y  .+  X )  =  .0. 
/\  A. z  e.  B  ( ( z  .+  X )  =  .0. 
->  y  =  z
) ) ) )
164, 15mpd 13 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E. y  e.  B  ( ( y  .+  X )  =  .0. 
/\  A. z  e.  B  ( ( z  .+  X )  =  .0. 
->  y  =  z
) ) )
17 oveq1 5974 . . . 4  |-  ( y  =  z  ->  (
y  .+  X )  =  ( z  .+  X ) )
1817eqeq1d 2216 . . 3  |-  ( y  =  z  ->  (
( y  .+  X
)  =  .0.  <->  ( z  .+  X )  =  .0.  ) )
1918reu8 2976 . 2  |-  ( E! y  e.  B  ( y  .+  X )  =  .0.  <->  E. y  e.  B  ( (
y  .+  X )  =  .0.  /\  A. z  e.  B  ( (
z  .+  X )  =  .0.  ->  y  =  z ) ) )
2016, 19sylibr 134 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  E! y  e.  B  ( y  .+  X
)  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   E!wreu 2488   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   0gc0g 13203   Grpcgrp 13447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450
This theorem is referenced by:  grpinvf  13494  grplinv  13497  isgrpinv  13501
  Copyright terms: Public domain W3C validator