| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinveu | Unicode version | ||
| Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 24-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpinveu.b |
|
| grpinveu.p |
|
| grpinveu.o |
|
| Ref | Expression |
|---|---|
| grpinveu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinveu.b |
. . . 4
| |
| 2 | grpinveu.p |
. . . 4
| |
| 3 | grpinveu.o |
. . . 4
| |
| 4 | 1, 2, 3 | grpinvex 13543 |
. . 3
|
| 5 | eqtr3 2249 |
. . . . . . . . . . . 12
| |
| 6 | 1, 2 | grprcan 13570 |
. . . . . . . . . . . 12
|
| 7 | 5, 6 | imbitrid 154 |
. . . . . . . . . . 11
|
| 8 | 7 | 3exp2 1249 |
. . . . . . . . . 10
|
| 9 | 8 | com24 87 |
. . . . . . . . 9
|
| 10 | 9 | imp41 353 |
. . . . . . . 8
|
| 11 | 10 | an32s 568 |
. . . . . . 7
|
| 12 | 11 | expd 258 |
. . . . . 6
|
| 13 | 12 | ralrimdva 2610 |
. . . . 5
|
| 14 | 13 | ancld 325 |
. . . 4
|
| 15 | 14 | reximdva 2632 |
. . 3
|
| 16 | 4, 15 | mpd 13 |
. 2
|
| 17 | oveq1 6008 |
. . . 4
| |
| 18 | 17 | eqeq1d 2238 |
. . 3
|
| 19 | 18 | reu8 2999 |
. 2
|
| 20 | 16, 19 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-riota 5954 df-ov 6004 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 |
| This theorem is referenced by: grpinvf 13580 grplinv 13583 isgrpinv 13587 |
| Copyright terms: Public domain | W3C validator |