ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lemul12a Unicode version

Theorem lemul12a 8935
Description: Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.)
Assertion
Ref Expression
lemul12a  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  (
( C  e.  RR  /\  0  <_  C )  /\  D  e.  RR ) )  ->  (
( A  <_  B  /\  C  <_  D )  ->  ( A  x.  C )  <_  ( B  x.  D )
) )

Proof of Theorem lemul12a
StepHypRef Expression
1 simpll 527 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  (
( C  e.  RR  /\  0  <_  C )  /\  D  e.  RR ) )  /\  ( A  <_  B  /\  C  <_  D ) )  -> 
( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR ) )
2 simpll 527 . . . . 5  |-  ( ( ( C  e.  RR  /\  0  <_  C )  /\  D  e.  RR )  ->  C  e.  RR )
32ad2antlr 489 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  (
( C  e.  RR  /\  0  <_  C )  /\  D  e.  RR ) )  /\  ( A  <_  B  /\  C  <_  D ) )  ->  C  e.  RR )
4 simplrr 536 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  (
( C  e.  RR  /\  0  <_  C )  /\  D  e.  RR ) )  /\  ( A  <_  B  /\  C  <_  D ) )  ->  D  e.  RR )
5 0re 8072 . . . . . . . . . 10  |-  0  e.  RR
6 letr 8155 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  C  e.  RR  /\  D  e.  RR )  ->  (
( 0  <_  C  /\  C  <_  D )  ->  0  <_  D
) )
75, 6mp3an1 1337 . . . . . . . . 9  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( ( 0  <_  C  /\  C  <_  D
)  ->  0  <_  D ) )
87exp4b 367 . . . . . . . 8  |-  ( C  e.  RR  ->  ( D  e.  RR  ->  ( 0  <_  C  ->  ( C  <_  D  ->  0  <_  D ) ) ) )
98com23 78 . . . . . . 7  |-  ( C  e.  RR  ->  (
0  <_  C  ->  ( D  e.  RR  ->  ( C  <_  D  ->  0  <_  D ) ) ) )
109imp41 353 . . . . . 6  |-  ( ( ( ( C  e.  RR  /\  0  <_  C )  /\  D  e.  RR )  /\  C  <_  D )  ->  0  <_  D )
1110ad2ant2l 508 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  (
( C  e.  RR  /\  0  <_  C )  /\  D  e.  RR ) )  /\  ( A  <_  B  /\  C  <_  D ) )  -> 
0  <_  D )
124, 11jca 306 . . . 4  |-  ( ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  (
( C  e.  RR  /\  0  <_  C )  /\  D  e.  RR ) )  /\  ( A  <_  B  /\  C  <_  D ) )  -> 
( D  e.  RR  /\  0  <_  D )
)
131, 3, 12jca32 310 . . 3  |-  ( ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  (
( C  e.  RR  /\  0  <_  C )  /\  D  e.  RR ) )  /\  ( A  <_  B  /\  C  <_  D ) )  -> 
( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) ) )
14 simpr 110 . . 3  |-  ( ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  (
( C  e.  RR  /\  0  <_  C )  /\  D  e.  RR ) )  /\  ( A  <_  B  /\  C  <_  D ) )  -> 
( A  <_  B  /\  C  <_  D ) )
15 lemul12b 8934 . . 3  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( ( A  <_  B  /\  C  <_  D )  ->  ( A  x.  C )  <_  ( B  x.  D
) ) )
1613, 14, 15sylc 62 . 2  |-  ( ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  (
( C  e.  RR  /\  0  <_  C )  /\  D  e.  RR ) )  /\  ( A  <_  B  /\  C  <_  D ) )  -> 
( A  x.  C
)  <_  ( B  x.  D ) )
1716ex 115 1  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  (
( C  e.  RR  /\  0  <_  C )  /\  D  e.  RR ) )  ->  (
( A  <_  B  /\  C  <_  D )  ->  ( A  x.  C )  <_  ( B  x.  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   RRcr 7924   0cc0 7925    x. cmul 7930    <_ cle 8108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655
This theorem is referenced by:  lemulge11  8939  lediv12a  8967  lemul12ad  9015  expge1  10721  leexp1a  10739  faclbnd6  10889  mertenslemi1  11846  lgslem3  15479
  Copyright terms: Public domain W3C validator