ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mobidh Unicode version

Theorem mobidh 2089
Description: Formula-building rule for "at most one" quantifier (deduction form). (Contributed by NM, 8-Mar-1995.)
Hypotheses
Ref Expression
mobidh.1  |-  ( ph  ->  A. x ph )
mobidh.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
mobidh  |-  ( ph  ->  ( E* x ps  <->  E* x ch ) )

Proof of Theorem mobidh
StepHypRef Expression
1 mobidh.1 . . . 4  |-  ( ph  ->  A. x ph )
2 mobidh.2 . . . 4  |-  ( ph  ->  ( ps  <->  ch )
)
31, 2exbidh 1638 . . 3  |-  ( ph  ->  ( E. x ps  <->  E. x ch ) )
41, 2eubidh 2061 . . 3  |-  ( ph  ->  ( E! x ps  <->  E! x ch ) )
53, 4imbi12d 234 . 2  |-  ( ph  ->  ( ( E. x ps  ->  E! x ps )  <->  ( E. x ch  ->  E! x ch ) ) )
6 df-mo 2059 . 2  |-  ( E* x ps  <->  ( E. x ps  ->  E! x ps ) )
7 df-mo 2059 . 2  |-  ( E* x ch  <->  ( E. x ch  ->  E! x ch ) )
85, 6, 73bitr4g 223 1  |-  ( ph  ->  ( E* x ps  <->  E* x ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371   E.wex 1516   E!weu 2055   E*wmo 2056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-eu 2058  df-mo 2059
This theorem is referenced by:  euan  2112
  Copyright terms: Public domain W3C validator