| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mobidh | GIF version | ||
| Description: Formula-building rule for "at most one" quantifier (deduction form). (Contributed by NM, 8-Mar-1995.) | 
| Ref | Expression | 
|---|---|
| mobidh.1 | ⊢ (𝜑 → ∀𝑥𝜑) | 
| mobidh.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| mobidh | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mobidh.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | mobidh.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | exbidh 1628 | . . 3 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) | 
| 4 | 1, 2 | eubidh 2051 | . . 3 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) | 
| 5 | 3, 4 | imbi12d 234 | . 2 ⊢ (𝜑 → ((∃𝑥𝜓 → ∃!𝑥𝜓) ↔ (∃𝑥𝜒 → ∃!𝑥𝜒))) | 
| 6 | df-mo 2049 | . 2 ⊢ (∃*𝑥𝜓 ↔ (∃𝑥𝜓 → ∃!𝑥𝜓)) | |
| 7 | df-mo 2049 | . 2 ⊢ (∃*𝑥𝜒 ↔ (∃𝑥𝜒 → ∃!𝑥𝜒)) | |
| 8 | 5, 6, 7 | 3bitr4g 223 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 ∃wex 1506 ∃!weu 2045 ∃*wmo 2046 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-eu 2048 df-mo 2049 | 
| This theorem is referenced by: euan 2101 | 
| Copyright terms: Public domain | W3C validator |