ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mobidh GIF version

Theorem mobidh 2058
Description: Formula-building rule for "at most one" quantifier (deduction form). (Contributed by NM, 8-Mar-1995.)
Hypotheses
Ref Expression
mobidh.1 (𝜑 → ∀𝑥𝜑)
mobidh.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mobidh (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))

Proof of Theorem mobidh
StepHypRef Expression
1 mobidh.1 . . . 4 (𝜑 → ∀𝑥𝜑)
2 mobidh.2 . . . 4 (𝜑 → (𝜓𝜒))
31, 2exbidh 1612 . . 3 (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
41, 2eubidh 2030 . . 3 (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
53, 4imbi12d 234 . 2 (𝜑 → ((∃𝑥𝜓 → ∃!𝑥𝜓) ↔ (∃𝑥𝜒 → ∃!𝑥𝜒)))
6 df-mo 2028 . 2 (∃*𝑥𝜓 ↔ (∃𝑥𝜓 → ∃!𝑥𝜓))
7 df-mo 2028 . 2 (∃*𝑥𝜒 ↔ (∃𝑥𝜒 → ∃!𝑥𝜒))
85, 6, 73bitr4g 223 1 (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351  wex 1490  ∃!weu 2024  ∃*wmo 2025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-4 1508  ax-17 1524  ax-ial 1532
This theorem depends on definitions:  df-bi 117  df-eu 2027  df-mo 2028
This theorem is referenced by:  euan  2080
  Copyright terms: Public domain W3C validator