| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > euan | Unicode version | ||
| Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 19-Feb-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| euan.1 | 
 | 
| Ref | Expression | 
|---|---|
| euan | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | euan.1 | 
. . . . . 6
 | |
| 2 | simpl 109 | 
. . . . . 6
 | |
| 3 | 1, 2 | exlimih 1607 | 
. . . . 5
 | 
| 4 | 3 | adantr 276 | 
. . . 4
 | 
| 5 | simpr 110 | 
. . . . . 6
 | |
| 6 | 5 | eximi 1614 | 
. . . . 5
 | 
| 7 | 6 | adantr 276 | 
. . . 4
 | 
| 8 | hbe1 1509 | 
. . . . . 6
 | |
| 9 | 3 | a1d 22 | 
. . . . . . . 8
 | 
| 10 | 9 | ancrd 326 | 
. . . . . . 7
 | 
| 11 | 5, 10 | impbid2 143 | 
. . . . . 6
 | 
| 12 | 8, 11 | mobidh 2079 | 
. . . . 5
 | 
| 13 | 12 | biimpa 296 | 
. . . 4
 | 
| 14 | 4, 7, 13 | jca32 310 | 
. . 3
 | 
| 15 | eu5 2092 | 
. . 3
 | |
| 16 | eu5 2092 | 
. . . 4
 | |
| 17 | 16 | anbi2i 457 | 
. . 3
 | 
| 18 | 14, 15, 17 | 3imtr4i 201 | 
. 2
 | 
| 19 | ibar 301 | 
. . . 4
 | |
| 20 | 1, 19 | eubidh 2051 | 
. . 3
 | 
| 21 | 20 | biimpa 296 | 
. 2
 | 
| 22 | 18, 21 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 | 
| This theorem is referenced by: euanv 2102 2eu7 2139 | 
| Copyright terms: Public domain | W3C validator |