ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euan Unicode version

Theorem euan 2062
Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 19-Feb-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Hypothesis
Ref Expression
euan.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
euan  |-  ( E! x ( ph  /\  ps )  <->  ( ph  /\  E! x ps ) )

Proof of Theorem euan
StepHypRef Expression
1 euan.1 . . . . . 6  |-  ( ph  ->  A. x ph )
2 simpl 108 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ph )
31, 2exlimih 1573 . . . . 5  |-  ( E. x ( ph  /\  ps )  ->  ph )
43adantr 274 . . . 4  |-  ( ( E. x ( ph  /\ 
ps )  /\  E* x ( ph  /\  ps ) )  ->  ph )
5 simpr 109 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ps )
65eximi 1580 . . . . 5  |-  ( E. x ( ph  /\  ps )  ->  E. x ps )
76adantr 274 . . . 4  |-  ( ( E. x ( ph  /\ 
ps )  /\  E* x ( ph  /\  ps ) )  ->  E. x ps )
8 hbe1 1475 . . . . . 6  |-  ( E. x ( ph  /\  ps )  ->  A. x E. x ( ph  /\  ps ) )
93a1d 22 . . . . . . . 8  |-  ( E. x ( ph  /\  ps )  ->  ( ps 
->  ph ) )
109ancrd 324 . . . . . . 7  |-  ( E. x ( ph  /\  ps )  ->  ( ps 
->  ( ph  /\  ps ) ) )
115, 10impbid2 142 . . . . . 6  |-  ( E. x ( ph  /\  ps )  ->  ( (
ph  /\  ps )  <->  ps ) )
128, 11mobidh 2040 . . . . 5  |-  ( E. x ( ph  /\  ps )  ->  ( E* x ( ph  /\  ps )  <->  E* x ps )
)
1312biimpa 294 . . . 4  |-  ( ( E. x ( ph  /\ 
ps )  /\  E* x ( ph  /\  ps ) )  ->  E* x ps )
144, 7, 13jca32 308 . . 3  |-  ( ( E. x ( ph  /\ 
ps )  /\  E* x ( ph  /\  ps ) )  ->  ( ph  /\  ( E. x ps  /\  E* x ps ) ) )
15 eu5 2053 . . 3  |-  ( E! x ( ph  /\  ps )  <->  ( E. x
( ph  /\  ps )  /\  E* x ( ph  /\ 
ps ) ) )
16 eu5 2053 . . . 4  |-  ( E! x ps  <->  ( E. x ps  /\  E* x ps ) )
1716anbi2i 453 . . 3  |-  ( (
ph  /\  E! x ps )  <->  ( ph  /\  ( E. x ps  /\  E* x ps ) ) )
1814, 15, 173imtr4i 200 . 2  |-  ( E! x ( ph  /\  ps )  ->  ( ph  /\  E! x ps )
)
19 ibar 299 . . . 4  |-  ( ph  ->  ( ps  <->  ( ph  /\ 
ps ) ) )
201, 19eubidh 2012 . . 3  |-  ( ph  ->  ( E! x ps  <->  E! x ( ph  /\  ps ) ) )
2120biimpa 294 . 2  |-  ( (
ph  /\  E! x ps )  ->  E! x
( ph  /\  ps )
)
2218, 21impbii 125 1  |-  ( E! x ( ph  /\  ps )  <->  ( ph  /\  E! x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1333   E.wex 1472   E!weu 2006   E*wmo 2007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010
This theorem is referenced by:  euanv  2063  2eu7  2100
  Copyright terms: Public domain W3C validator