| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euan | Unicode version | ||
| Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 19-Feb-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| euan.1 |
|
| Ref | Expression |
|---|---|
| euan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euan.1 |
. . . . . 6
| |
| 2 | simpl 109 |
. . . . . 6
| |
| 3 | 1, 2 | exlimih 1616 |
. . . . 5
|
| 4 | 3 | adantr 276 |
. . . 4
|
| 5 | simpr 110 |
. . . . . 6
| |
| 6 | 5 | eximi 1623 |
. . . . 5
|
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | hbe1 1518 |
. . . . . 6
| |
| 9 | 3 | a1d 22 |
. . . . . . . 8
|
| 10 | 9 | ancrd 326 |
. . . . . . 7
|
| 11 | 5, 10 | impbid2 143 |
. . . . . 6
|
| 12 | 8, 11 | mobidh 2088 |
. . . . 5
|
| 13 | 12 | biimpa 296 |
. . . 4
|
| 14 | 4, 7, 13 | jca32 310 |
. . 3
|
| 15 | eu5 2101 |
. . 3
| |
| 16 | eu5 2101 |
. . . 4
| |
| 17 | 16 | anbi2i 457 |
. . 3
|
| 18 | 14, 15, 17 | 3imtr4i 201 |
. 2
|
| 19 | ibar 301 |
. . . 4
| |
| 20 | 1, 19 | eubidh 2060 |
. . 3
|
| 21 | 20 | biimpa 296 |
. 2
|
| 22 | 18, 21 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 |
| This theorem is referenced by: euanv 2111 2eu7 2148 |
| Copyright terms: Public domain | W3C validator |