ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eubidh Unicode version

Theorem eubidh 2020
Description: Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.)
Hypotheses
Ref Expression
eubidh.1  |-  ( ph  ->  A. x ph )
eubidh.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
eubidh  |-  ( ph  ->  ( E! x ps  <->  E! x ch ) )

Proof of Theorem eubidh
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eubidh.1 . . . 4  |-  ( ph  ->  A. x ph )
2 eubidh.2 . . . . 5  |-  ( ph  ->  ( ps  <->  ch )
)
32bibi1d 232 . . . 4  |-  ( ph  ->  ( ( ps  <->  x  =  y )  <->  ( ch  <->  x  =  y ) ) )
41, 3albidh 1468 . . 3  |-  ( ph  ->  ( A. x ( ps  <->  x  =  y
)  <->  A. x ( ch  <->  x  =  y ) ) )
54exbidv 1813 . 2  |-  ( ph  ->  ( E. y A. x ( ps  <->  x  =  y )  <->  E. y A. x ( ch  <->  x  =  y ) ) )
6 df-eu 2017 . 2  |-  ( E! x ps  <->  E. y A. x ( ps  <->  x  =  y ) )
7 df-eu 2017 . 2  |-  ( E! x ch  <->  E. y A. x ( ch  <->  x  =  y ) )
85, 6, 73bitr4g 222 1  |-  ( ph  ->  ( E! x ps  <->  E! x ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341   E.wex 1480   E!weu 2014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-eu 2017
This theorem is referenced by:  euor  2040  mobidh  2048  euan  2070  euor2  2072  eupickbi  2096
  Copyright terms: Public domain W3C validator