ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mooran1 Unicode version

Theorem mooran1 2098
Description: "At most one" imports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
mooran1  |-  ( ( E* x ph  \/  E* x ps )  ->  E* x ( ph  /\  ps ) )

Proof of Theorem mooran1
StepHypRef Expression
1 simpl 109 . . 3  |-  ( (
ph  /\  ps )  ->  ph )
21moimi 2091 . 2  |-  ( E* x ph  ->  E* x ( ph  /\  ps ) )
3 moan 2095 . 2  |-  ( E* x ps  ->  E* x ( ph  /\  ps ) )
42, 3jaoi 716 1  |-  ( ( E* x ph  \/  E* x ps )  ->  E* x ( ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708   E*wmo 2027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator