ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mooran1 GIF version

Theorem mooran1 2086
Description: "At most one" imports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
mooran1 ((∃*𝑥𝜑 ∨ ∃*𝑥𝜓) → ∃*𝑥(𝜑𝜓))

Proof of Theorem mooran1
StepHypRef Expression
1 simpl 108 . . 3 ((𝜑𝜓) → 𝜑)
21moimi 2079 . 2 (∃*𝑥𝜑 → ∃*𝑥(𝜑𝜓))
3 moan 2083 . 2 (∃*𝑥𝜓 → ∃*𝑥(𝜑𝜓))
42, 3jaoi 706 1 ((∃*𝑥𝜑 ∨ ∃*𝑥𝜓) → ∃*𝑥(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  ∃*wmo 2015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator