| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mooran1 | GIF version | ||
| Description: "At most one" imports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| mooran1 | ⊢ ((∃*𝑥𝜑 ∨ ∃*𝑥𝜓) → ∃*𝑥(𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | moimi 2143 | . 2 ⊢ (∃*𝑥𝜑 → ∃*𝑥(𝜑 ∧ 𝜓)) |
| 3 | moan 2147 | . 2 ⊢ (∃*𝑥𝜓 → ∃*𝑥(𝜑 ∧ 𝜓)) | |
| 4 | 2, 3 | jaoi 721 | 1 ⊢ ((∃*𝑥𝜑 ∨ ∃*𝑥𝜓) → ∃*𝑥(𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 ∃*wmo 2078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |