Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mooran1 | GIF version |
Description: "At most one" imports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
mooran1 | ⊢ ((∃*𝑥𝜑 ∨ ∃*𝑥𝜓) → ∃*𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | moimi 2084 | . 2 ⊢ (∃*𝑥𝜑 → ∃*𝑥(𝜑 ∧ 𝜓)) |
3 | moan 2088 | . 2 ⊢ (∃*𝑥𝜓 → ∃*𝑥(𝜑 ∧ 𝜓)) | |
4 | 2, 3 | jaoi 711 | 1 ⊢ ((∃*𝑥𝜑 ∨ ∃*𝑥𝜓) → ∃*𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 703 ∃*wmo 2020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |