ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mooran1 GIF version

Theorem mooran1 2128
Description: "At most one" imports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
mooran1 ((∃*𝑥𝜑 ∨ ∃*𝑥𝜓) → ∃*𝑥(𝜑𝜓))

Proof of Theorem mooran1
StepHypRef Expression
1 simpl 109 . . 3 ((𝜑𝜓) → 𝜑)
21moimi 2121 . 2 (∃*𝑥𝜑 → ∃*𝑥(𝜑𝜓))
3 moan 2125 . 2 (∃*𝑥𝜓 → ∃*𝑥(𝜑𝜓))
42, 3jaoi 718 1 ((∃*𝑥𝜑 ∨ ∃*𝑥𝜓) → ∃*𝑥(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710  ∃*wmo 2056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator