ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpanl1 Unicode version

Theorem mpanl1 434
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Hypotheses
Ref Expression
mpanl1.1  |-  ph
mpanl1.2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
Assertion
Ref Expression
mpanl1  |-  ( ( ps  /\  ch )  ->  th )

Proof of Theorem mpanl1
StepHypRef Expression
1 mpanl1.1 . . 3  |-  ph
21jctl 314 . 2  |-  ( ps 
->  ( ph  /\  ps ) )
3 mpanl1.2 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
42, 3sylan 283 1  |-  ( ( ps  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  mpanl12  436  ercnv  6631  rec11api  8808  divdiv23apzi  8820  recp1lt1  8954  divgt0i  8965  divge0i  8966  ltreci  8967  lereci  8968  lt2msqi  8969  le2msqi  8970  msq11i  8971  ltdiv23i  8981  fnn0ind  9471  elfzp1b  10201  elfzm1b  10202  sqrt11i  11362  sqrtmuli  11363  sqrtmsq2i  11365  sqrtlei  11366  sqrtlti  11367
  Copyright terms: Public domain W3C validator