ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpanl1 Unicode version

Theorem mpanl1 434
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Hypotheses
Ref Expression
mpanl1.1  |-  ph
mpanl1.2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
Assertion
Ref Expression
mpanl1  |-  ( ( ps  /\  ch )  ->  th )

Proof of Theorem mpanl1
StepHypRef Expression
1 mpanl1.1 . . 3  |-  ph
21jctl 314 . 2  |-  ( ps 
->  ( ph  /\  ps ) )
3 mpanl1.2 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
42, 3sylan 283 1  |-  ( ( ps  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  mpanl12  436  ercnv  6608  rec11api  8772  divdiv23apzi  8784  recp1lt1  8918  divgt0i  8929  divge0i  8930  ltreci  8931  lereci  8932  lt2msqi  8933  le2msqi  8934  msq11i  8935  ltdiv23i  8945  fnn0ind  9433  elfzp1b  10163  elfzm1b  10164  sqrt11i  11276  sqrtmuli  11277  sqrtmsq2i  11279  sqrtlei  11280  sqrtlti  11281
  Copyright terms: Public domain W3C validator