ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzp1b Unicode version

Theorem elfzp1b 10032
Description: An integer is a member of a 0-based finite set of sequential integers iff its successor is a member of the corresponding 1-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
elfzp1b  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 0 ... ( N  -  1 ) )  <-> 
( K  +  1 )  e.  ( 1 ... N ) ) )

Proof of Theorem elfzp1b
StepHypRef Expression
1 peano2z 9227 . . . 4  |-  ( K  e.  ZZ  ->  ( K  +  1 )  e.  ZZ )
2 1z 9217 . . . . 5  |-  1  e.  ZZ
3 fzsubel 9995 . . . . . 6  |-  ( ( ( 1  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  +  1 )  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( ( K  + 
1 )  e.  ( 1 ... N )  <-> 
( ( K  + 
1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) ) ) )
42, 3mpanl1 431 . . . . 5  |-  ( ( N  e.  ZZ  /\  ( ( K  + 
1 )  e.  ZZ  /\  1  e.  ZZ ) )  ->  ( ( K  +  1 )  e.  ( 1 ... N )  <->  ( ( K  +  1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ) )
52, 4mpanr2 435 . . . 4  |-  ( ( N  e.  ZZ  /\  ( K  +  1
)  e.  ZZ )  ->  ( ( K  +  1 )  e.  ( 1 ... N
)  <->  ( ( K  +  1 )  - 
1 )  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ) )
61, 5sylan2 284 . . 3  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( K  + 
1 )  e.  ( 1 ... N )  <-> 
( ( K  + 
1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) ) ) )
76ancoms 266 . 2  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  + 
1 )  e.  ( 1 ... N )  <-> 
( ( K  + 
1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) ) ) )
8 zcn 9196 . . . . 5  |-  ( K  e.  ZZ  ->  K  e.  CC )
9 ax-1cn 7846 . . . . 5  |-  1  e.  CC
10 pncan 8104 . . . . 5  |-  ( ( K  e.  CC  /\  1  e.  CC )  ->  ( ( K  + 
1 )  -  1 )  =  K )
118, 9, 10sylancl 410 . . . 4  |-  ( K  e.  ZZ  ->  (
( K  +  1 )  -  1 )  =  K )
12 1m1e0 8926 . . . . . 6  |-  ( 1  -  1 )  =  0
1312oveq1i 5852 . . . . 5  |-  ( ( 1  -  1 ) ... ( N  - 
1 ) )  =  ( 0 ... ( N  -  1 ) )
1413a1i 9 . . . 4  |-  ( K  e.  ZZ  ->  (
( 1  -  1 ) ... ( N  -  1 ) )  =  ( 0 ... ( N  -  1 ) ) )
1511, 14eleq12d 2237 . . 3  |-  ( K  e.  ZZ  ->  (
( ( K  + 
1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) )  <->  K  e.  ( 0 ... ( N  -  1 ) ) ) )
1615adantr 274 . 2  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( K  +  1 )  - 
1 )  e.  ( ( 1  -  1 ) ... ( N  -  1 ) )  <-> 
K  e.  ( 0 ... ( N  - 
1 ) ) ) )
177, 16bitr2d 188 1  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 0 ... ( N  -  1 ) )  <-> 
( K  +  1 )  e.  ( 1 ... N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756    - cmin 8069   ZZcz 9191   ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-fz 9945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator