ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzp1b Unicode version

Theorem elfzp1b 10022
Description: An integer is a member of a 0-based finite set of sequential integers iff its successor is a member of the corresponding 1-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
elfzp1b  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 0 ... ( N  -  1 ) )  <-> 
( K  +  1 )  e.  ( 1 ... N ) ) )

Proof of Theorem elfzp1b
StepHypRef Expression
1 peano2z 9218 . . . 4  |-  ( K  e.  ZZ  ->  ( K  +  1 )  e.  ZZ )
2 1z 9208 . . . . 5  |-  1  e.  ZZ
3 fzsubel 9985 . . . . . 6  |-  ( ( ( 1  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  +  1 )  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( ( K  + 
1 )  e.  ( 1 ... N )  <-> 
( ( K  + 
1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) ) ) )
42, 3mpanl1 431 . . . . 5  |-  ( ( N  e.  ZZ  /\  ( ( K  + 
1 )  e.  ZZ  /\  1  e.  ZZ ) )  ->  ( ( K  +  1 )  e.  ( 1 ... N )  <->  ( ( K  +  1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ) )
52, 4mpanr2 435 . . . 4  |-  ( ( N  e.  ZZ  /\  ( K  +  1
)  e.  ZZ )  ->  ( ( K  +  1 )  e.  ( 1 ... N
)  <->  ( ( K  +  1 )  - 
1 )  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ) )
61, 5sylan2 284 . . 3  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( K  + 
1 )  e.  ( 1 ... N )  <-> 
( ( K  + 
1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) ) ) )
76ancoms 266 . 2  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  + 
1 )  e.  ( 1 ... N )  <-> 
( ( K  + 
1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) ) ) )
8 zcn 9187 . . . . 5  |-  ( K  e.  ZZ  ->  K  e.  CC )
9 ax-1cn 7837 . . . . 5  |-  1  e.  CC
10 pncan 8095 . . . . 5  |-  ( ( K  e.  CC  /\  1  e.  CC )  ->  ( ( K  + 
1 )  -  1 )  =  K )
118, 9, 10sylancl 410 . . . 4  |-  ( K  e.  ZZ  ->  (
( K  +  1 )  -  1 )  =  K )
12 1m1e0 8917 . . . . . 6  |-  ( 1  -  1 )  =  0
1312oveq1i 5846 . . . . 5  |-  ( ( 1  -  1 ) ... ( N  - 
1 ) )  =  ( 0 ... ( N  -  1 ) )
1413a1i 9 . . . 4  |-  ( K  e.  ZZ  ->  (
( 1  -  1 ) ... ( N  -  1 ) )  =  ( 0 ... ( N  -  1 ) ) )
1511, 14eleq12d 2235 . . 3  |-  ( K  e.  ZZ  ->  (
( ( K  + 
1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) )  <->  K  e.  ( 0 ... ( N  -  1 ) ) ) )
1615adantr 274 . 2  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( K  +  1 )  - 
1 )  e.  ( ( 1  -  1 ) ... ( N  -  1 ) )  <-> 
K  e.  ( 0 ... ( N  - 
1 ) ) ) )
177, 16bitr2d 188 1  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 0 ... ( N  -  1 ) )  <-> 
( K  +  1 )  e.  ( 1 ... N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135  (class class class)co 5836   CCcc 7742   0cc0 7744   1c1 7745    + caddc 7747    - cmin 8060   ZZcz 9182   ...cfz 9935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183  df-fz 9936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator