ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzp1b Unicode version

Theorem elfzp1b 9764
Description: An integer is a member of a 0-based finite set of sequential integers iff its successor is a member of the corresponding 1-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
elfzp1b  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 0 ... ( N  -  1 ) )  <-> 
( K  +  1 )  e.  ( 1 ... N ) ) )

Proof of Theorem elfzp1b
StepHypRef Expression
1 peano2z 8988 . . . 4  |-  ( K  e.  ZZ  ->  ( K  +  1 )  e.  ZZ )
2 1z 8978 . . . . 5  |-  1  e.  ZZ
3 fzsubel 9727 . . . . . 6  |-  ( ( ( 1  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  +  1 )  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( ( K  + 
1 )  e.  ( 1 ... N )  <-> 
( ( K  + 
1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) ) ) )
42, 3mpanl1 428 . . . . 5  |-  ( ( N  e.  ZZ  /\  ( ( K  + 
1 )  e.  ZZ  /\  1  e.  ZZ ) )  ->  ( ( K  +  1 )  e.  ( 1 ... N )  <->  ( ( K  +  1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ) )
52, 4mpanr2 432 . . . 4  |-  ( ( N  e.  ZZ  /\  ( K  +  1
)  e.  ZZ )  ->  ( ( K  +  1 )  e.  ( 1 ... N
)  <->  ( ( K  +  1 )  - 
1 )  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ) )
61, 5sylan2 282 . . 3  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( K  + 
1 )  e.  ( 1 ... N )  <-> 
( ( K  + 
1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) ) ) )
76ancoms 266 . 2  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  + 
1 )  e.  ( 1 ... N )  <-> 
( ( K  + 
1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) ) ) )
8 zcn 8957 . . . . 5  |-  ( K  e.  ZZ  ->  K  e.  CC )
9 ax-1cn 7632 . . . . 5  |-  1  e.  CC
10 pncan 7885 . . . . 5  |-  ( ( K  e.  CC  /\  1  e.  CC )  ->  ( ( K  + 
1 )  -  1 )  =  K )
118, 9, 10sylancl 407 . . . 4  |-  ( K  e.  ZZ  ->  (
( K  +  1 )  -  1 )  =  K )
12 1m1e0 8693 . . . . . 6  |-  ( 1  -  1 )  =  0
1312oveq1i 5736 . . . . 5  |-  ( ( 1  -  1 ) ... ( N  - 
1 ) )  =  ( 0 ... ( N  -  1 ) )
1413a1i 9 . . . 4  |-  ( K  e.  ZZ  ->  (
( 1  -  1 ) ... ( N  -  1 ) )  =  ( 0 ... ( N  -  1 ) ) )
1511, 14eleq12d 2183 . . 3  |-  ( K  e.  ZZ  ->  (
( ( K  + 
1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) )  <->  K  e.  ( 0 ... ( N  -  1 ) ) ) )
1615adantr 272 . 2  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( K  +  1 )  - 
1 )  e.  ( ( 1  -  1 ) ... ( N  -  1 ) )  <-> 
K  e.  ( 0 ... ( N  - 
1 ) ) ) )
177, 16bitr2d 188 1  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 0 ... ( N  -  1 ) )  <-> 
( K  +  1 )  e.  ( 1 ... N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1312    e. wcel 1461  (class class class)co 5726   CCcc 7539   0cc0 7541   1c1 7542    + caddc 7544    - cmin 7850   ZZcz 8952   ...cfz 9677
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-addcom 7639  ax-addass 7641  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-0id 7647  ax-rnegex 7648  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-ltadd 7655
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-opab 3948  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-iota 5044  df-fun 5081  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-inn 8625  df-n0 8876  df-z 8953  df-fz 9678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator