ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzp1b Unicode version

Theorem elfzp1b 10166
Description: An integer is a member of a 0-based finite set of sequential integers iff its successor is a member of the corresponding 1-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
elfzp1b  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 0 ... ( N  -  1 ) )  <-> 
( K  +  1 )  e.  ( 1 ... N ) ) )

Proof of Theorem elfzp1b
StepHypRef Expression
1 peano2z 9356 . . . 4  |-  ( K  e.  ZZ  ->  ( K  +  1 )  e.  ZZ )
2 1z 9346 . . . . 5  |-  1  e.  ZZ
3 fzsubel 10129 . . . . . 6  |-  ( ( ( 1  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  +  1 )  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( ( K  + 
1 )  e.  ( 1 ... N )  <-> 
( ( K  + 
1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) ) ) )
42, 3mpanl1 434 . . . . 5  |-  ( ( N  e.  ZZ  /\  ( ( K  + 
1 )  e.  ZZ  /\  1  e.  ZZ ) )  ->  ( ( K  +  1 )  e.  ( 1 ... N )  <->  ( ( K  +  1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ) )
52, 4mpanr2 438 . . . 4  |-  ( ( N  e.  ZZ  /\  ( K  +  1
)  e.  ZZ )  ->  ( ( K  +  1 )  e.  ( 1 ... N
)  <->  ( ( K  +  1 )  - 
1 )  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ) )
61, 5sylan2 286 . . 3  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( K  + 
1 )  e.  ( 1 ... N )  <-> 
( ( K  + 
1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) ) ) )
76ancoms 268 . 2  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  + 
1 )  e.  ( 1 ... N )  <-> 
( ( K  + 
1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) ) ) )
8 zcn 9325 . . . . 5  |-  ( K  e.  ZZ  ->  K  e.  CC )
9 ax-1cn 7967 . . . . 5  |-  1  e.  CC
10 pncan 8227 . . . . 5  |-  ( ( K  e.  CC  /\  1  e.  CC )  ->  ( ( K  + 
1 )  -  1 )  =  K )
118, 9, 10sylancl 413 . . . 4  |-  ( K  e.  ZZ  ->  (
( K  +  1 )  -  1 )  =  K )
12 1m1e0 9053 . . . . . 6  |-  ( 1  -  1 )  =  0
1312oveq1i 5929 . . . . 5  |-  ( ( 1  -  1 ) ... ( N  - 
1 ) )  =  ( 0 ... ( N  -  1 ) )
1413a1i 9 . . . 4  |-  ( K  e.  ZZ  ->  (
( 1  -  1 ) ... ( N  -  1 ) )  =  ( 0 ... ( N  -  1 ) ) )
1511, 14eleq12d 2264 . . 3  |-  ( K  e.  ZZ  ->  (
( ( K  + 
1 )  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) )  <->  K  e.  ( 0 ... ( N  -  1 ) ) ) )
1615adantr 276 . 2  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( K  +  1 )  - 
1 )  e.  ( ( 1  -  1 ) ... ( N  -  1 ) )  <-> 
K  e.  ( 0 ... ( N  - 
1 ) ) ) )
177, 16bitr2d 189 1  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 0 ... ( N  -  1 ) )  <-> 
( K  +  1 )  e.  ( 1 ... N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164  (class class class)co 5919   CCcc 7872   0cc0 7874   1c1 7875    + caddc 7877    - cmin 8192   ZZcz 9320   ...cfz 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-fz 10078
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator