ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recp1lt1 Unicode version

Theorem recp1lt1 9046
Description: Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005.)
Assertion
Ref Expression
recp1lt1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  /  (
1  +  A ) )  <  1 )

Proof of Theorem recp1lt1
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  RR )
2 ltp1 8991 . . . . 5  |-  ( A  e.  RR  ->  A  <  ( A  +  1 ) )
31, 2syl 14 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  <  ( A  + 
1 ) )
41recnd 8175 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  CC )
5 1cnd 8162 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
1  e.  CC )
64, 5addcomd 8297 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  +  1 )  =  ( 1  +  A ) )
73, 6breqtrd 4109 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  <  ( 1  +  A ) )
85, 4addcld 8166 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 1  +  A
)  e.  CC )
9 1red 8161 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
1  e.  RR )
109, 1readdcld 8176 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 1  +  A
)  e.  RR )
11 1re 8145 . . . . . 6  |-  1  e.  RR
12 0lt1 8273 . . . . . . 7  |-  0  <  1
13 addgtge0 8597 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  A  e.  RR )  /\  ( 0  <  1  /\  0  <_  A ) )  -> 
0  <  ( 1  +  A ) )
1412, 13mpanr1 437 . . . . . 6  |-  ( ( ( 1  e.  RR  /\  A  e.  RR )  /\  0  <_  A
)  ->  0  <  ( 1  +  A ) )
1511, 14mpanl1 434 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
0  <  ( 1  +  A ) )
1610, 15gt0ap0d 8776 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 1  +  A
) #  0 )
174, 8, 16divcanap1d 8938 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( A  / 
( 1  +  A
) )  x.  (
1  +  A ) )  =  A )
188mulid2d 8165 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 1  x.  (
1  +  A ) )  =  ( 1  +  A ) )
197, 17, 183brtr4d 4115 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( A  / 
( 1  +  A
) )  x.  (
1  +  A ) )  <  ( 1  x.  ( 1  +  A ) ) )
201, 10, 16redivclapd 8982 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  /  (
1  +  A ) )  e.  RR )
21 ltmul1 8739 . . 3  |-  ( ( ( A  /  (
1  +  A ) )  e.  RR  /\  1  e.  RR  /\  (
( 1  +  A
)  e.  RR  /\  0  <  ( 1  +  A ) ) )  ->  ( ( A  /  ( 1  +  A ) )  <  1  <->  ( ( A  /  ( 1  +  A ) )  x.  ( 1  +  A
) )  <  (
1  x.  ( 1  +  A ) ) ) )
2220, 9, 10, 15, 21syl112anc 1275 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( A  / 
( 1  +  A
) )  <  1  <->  ( ( A  /  (
1  +  A ) )  x.  ( 1  +  A ) )  <  ( 1  x.  ( 1  +  A
) ) ) )
2319, 22mpbird 167 1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  /  (
1  +  A ) )  <  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   RRcr 7998   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004    < clt 8181    <_ cle 8182    / cdiv 8819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator