ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recp1lt1 Unicode version

Theorem recp1lt1 8972
Description: Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005.)
Assertion
Ref Expression
recp1lt1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  /  (
1  +  A ) )  <  1 )

Proof of Theorem recp1lt1
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  RR )
2 ltp1 8917 . . . . 5  |-  ( A  e.  RR  ->  A  <  ( A  +  1 ) )
31, 2syl 14 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  <  ( A  + 
1 ) )
41recnd 8101 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  CC )
5 1cnd 8088 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
1  e.  CC )
64, 5addcomd 8223 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  +  1 )  =  ( 1  +  A ) )
73, 6breqtrd 4070 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  <  ( 1  +  A ) )
85, 4addcld 8092 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 1  +  A
)  e.  CC )
9 1red 8087 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
1  e.  RR )
109, 1readdcld 8102 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 1  +  A
)  e.  RR )
11 1re 8071 . . . . . 6  |-  1  e.  RR
12 0lt1 8199 . . . . . . 7  |-  0  <  1
13 addgtge0 8523 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  A  e.  RR )  /\  ( 0  <  1  /\  0  <_  A ) )  -> 
0  <  ( 1  +  A ) )
1412, 13mpanr1 437 . . . . . 6  |-  ( ( ( 1  e.  RR  /\  A  e.  RR )  /\  0  <_  A
)  ->  0  <  ( 1  +  A ) )
1511, 14mpanl1 434 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
0  <  ( 1  +  A ) )
1610, 15gt0ap0d 8702 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 1  +  A
) #  0 )
174, 8, 16divcanap1d 8864 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( A  / 
( 1  +  A
) )  x.  (
1  +  A ) )  =  A )
188mulid2d 8091 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 1  x.  (
1  +  A ) )  =  ( 1  +  A ) )
197, 17, 183brtr4d 4076 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( A  / 
( 1  +  A
) )  x.  (
1  +  A ) )  <  ( 1  x.  ( 1  +  A ) ) )
201, 10, 16redivclapd 8908 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  /  (
1  +  A ) )  e.  RR )
21 ltmul1 8665 . . 3  |-  ( ( ( A  /  (
1  +  A ) )  e.  RR  /\  1  e.  RR  /\  (
( 1  +  A
)  e.  RR  /\  0  <  ( 1  +  A ) ) )  ->  ( ( A  /  ( 1  +  A ) )  <  1  <->  ( ( A  /  ( 1  +  A ) )  x.  ( 1  +  A
) )  <  (
1  x.  ( 1  +  A ) ) ) )
2220, 9, 10, 15, 21syl112anc 1254 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( A  / 
( 1  +  A
) )  <  1  <->  ( ( A  /  (
1  +  A ) )  x.  ( 1  +  A ) )  <  ( 1  x.  ( 1  +  A
) ) ) )
2319, 22mpbird 167 1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  /  (
1  +  A ) )  <  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    x. cmul 7930    < clt 8107    <_ cle 8108    / cdiv 8745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator