ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recp1lt1 Unicode version

Theorem recp1lt1 8252
Description: Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005.)
Assertion
Ref Expression
recp1lt1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  /  (
1  +  A ) )  <  1 )

Proof of Theorem recp1lt1
StepHypRef Expression
1 simpl 107 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  RR )
2 ltp1 8197 . . . . 5  |-  ( A  e.  RR  ->  A  <  ( A  +  1 ) )
31, 2syl 14 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  <  ( A  + 
1 ) )
41recnd 7417 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  e.  CC )
5 1cnd 7405 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
1  e.  CC )
64, 5addcomd 7534 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  +  1 )  =  ( 1  +  A ) )
73, 6breqtrd 3835 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  A  <  ( 1  +  A ) )
85, 4addcld 7408 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 1  +  A
)  e.  CC )
9 1red 7404 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
1  e.  RR )
109, 1readdcld 7418 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 1  +  A
)  e.  RR )
11 1re 7388 . . . . . 6  |-  1  e.  RR
12 0lt1 7511 . . . . . . 7  |-  0  <  1
13 addgtge0 7829 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  A  e.  RR )  /\  ( 0  <  1  /\  0  <_  A ) )  -> 
0  <  ( 1  +  A ) )
1412, 13mpanr1 428 . . . . . 6  |-  ( ( ( 1  e.  RR  /\  A  e.  RR )  /\  0  <_  A
)  ->  0  <  ( 1  +  A ) )
1511, 14mpanl1 425 . . . . 5  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
0  <  ( 1  +  A ) )
1610, 15gt0ap0d 8003 . . . 4  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 1  +  A
) #  0 )
174, 8, 16divcanap1d 8153 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( A  / 
( 1  +  A
) )  x.  (
1  +  A ) )  =  A )
188mulid2d 7407 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( 1  x.  (
1  +  A ) )  =  ( 1  +  A ) )
197, 17, 183brtr4d 3841 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( A  / 
( 1  +  A
) )  x.  (
1  +  A ) )  <  ( 1  x.  ( 1  +  A ) ) )
201, 10, 16redivclapd 8195 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  /  (
1  +  A ) )  e.  RR )
21 ltmul1 7967 . . 3  |-  ( ( ( A  /  (
1  +  A ) )  e.  RR  /\  1  e.  RR  /\  (
( 1  +  A
)  e.  RR  /\  0  <  ( 1  +  A ) ) )  ->  ( ( A  /  ( 1  +  A ) )  <  1  <->  ( ( A  /  ( 1  +  A ) )  x.  ( 1  +  A
) )  <  (
1  x.  ( 1  +  A ) ) ) )
2220, 9, 10, 15, 21syl112anc 1174 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( ( A  / 
( 1  +  A
) )  <  1  <->  ( ( A  /  (
1  +  A ) )  x.  ( 1  +  A ) )  <  ( 1  x.  ( 1  +  A
) ) ) )
2319, 22mpbird 165 1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  /  (
1  +  A ) )  <  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1434   class class class wbr 3811  (class class class)co 5589   RRcr 7250   0cc0 7251   1c1 7252    + caddc 7254    x. cmul 7256    < clt 7423    <_ cle 7424    / cdiv 8035
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-cnex 7337  ax-resscn 7338  ax-1cn 7339  ax-1re 7340  ax-icn 7341  ax-addcl 7342  ax-addrcl 7343  ax-mulcl 7344  ax-mulrcl 7345  ax-addcom 7346  ax-mulcom 7347  ax-addass 7348  ax-mulass 7349  ax-distr 7350  ax-i2m1 7351  ax-0lt1 7352  ax-1rid 7353  ax-0id 7354  ax-rnegex 7355  ax-precex 7356  ax-cnre 7357  ax-pre-ltirr 7358  ax-pre-ltwlin 7359  ax-pre-lttrn 7360  ax-pre-apti 7361  ax-pre-ltadd 7362  ax-pre-mulgt0 7363  ax-pre-mulext 7364
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-id 4083  df-po 4086  df-iso 4087  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-iota 4932  df-fun 4969  df-fv 4975  df-riota 5545  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-pnf 7425  df-mnf 7426  df-xr 7427  df-ltxr 7428  df-le 7429  df-sub 7556  df-neg 7557  df-reap 7950  df-ap 7957  df-div 8036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator