ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnn0ind Unicode version

Theorem fnn0ind 9065
Description: Induction on the integers from  0 to  N inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
fnn0ind.1  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
fnn0ind.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
fnn0ind.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
fnn0ind.4  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
fnn0ind.5  |-  ( N  e.  NN0  ->  ps )
fnn0ind.6  |-  ( ( N  e.  NN0  /\  y  e.  NN0  /\  y  <  N )  ->  ( ch  ->  th ) )
Assertion
Ref Expression
fnn0ind  |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  K  <_  N )  ->  ta )
Distinct variable groups:    x, K    x, N, y    ch, x    ph, y    ps, x    ta, x    th, x
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    K( y)

Proof of Theorem fnn0ind
StepHypRef Expression
1 elnn0z 8965 . . . 4  |-  ( K  e.  NN0  <->  ( K  e.  ZZ  /\  0  <_  K ) )
2 nn0z 8972 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ZZ )
3 0z 8963 . . . . . . . 8  |-  0  e.  ZZ
4 fnn0ind.1 . . . . . . . . 9  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
5 fnn0ind.2 . . . . . . . . 9  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
6 fnn0ind.3 . . . . . . . . 9  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
7 fnn0ind.4 . . . . . . . . 9  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
8 elnn0z 8965 . . . . . . . . . . 11  |-  ( N  e.  NN0  <->  ( N  e.  ZZ  /\  0  <_  N ) )
9 fnn0ind.5 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ps )
108, 9sylbir 134 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  0  <_  N )  ->  ps )
11103adant1 980 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ  /\  0  <_  N )  ->  ps )
12 zre 8956 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ZZ  ->  y  e.  RR )
13 zre 8956 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  N  e.  RR )
14 0re 7684 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
15 lelttr 7769 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  y  e.  RR  /\  N  e.  RR )  ->  (
( 0  <_  y  /\  y  <  N )  ->  0  <  N
) )
16 ltle 7768 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  RR  /\  N  e.  RR )  ->  ( 0  <  N  ->  0  <_  N )
)
17163adant2 981 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  y  e.  RR  /\  N  e.  RR )  ->  (
0  <  N  ->  0  <_  N ) )
1815, 17syld 45 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  y  e.  RR  /\  N  e.  RR )  ->  (
( 0  <_  y  /\  y  <  N )  ->  0  <_  N
) )
1914, 18mp3an1 1283 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR  /\  N  e.  RR )  ->  ( ( 0  <_ 
y  /\  y  <  N )  ->  0  <_  N ) )
2012, 13, 19syl2an 285 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0  <_ 
y  /\  y  <  N )  ->  0  <_  N ) )
2120ex 114 . . . . . . . . . . . . . 14  |-  ( y  e.  ZZ  ->  ( N  e.  ZZ  ->  ( ( 0  <_  y  /\  y  <  N )  ->  0  <_  N
) ) )
2221com23 78 . . . . . . . . . . . . 13  |-  ( y  e.  ZZ  ->  (
( 0  <_  y  /\  y  <  N )  ->  ( N  e.  ZZ  ->  0  <_  N ) ) )
23223impib 1160 . . . . . . . . . . . 12  |-  ( ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N )  ->  ( N  e.  ZZ  ->  0  <_  N ) )
2423impcom 124 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N ) )  ->  0  <_  N
)
25 elnn0z 8965 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  NN0  <->  ( y  e.  ZZ  /\  0  <_ 
y ) )
2625anbi1i 451 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  NN0  /\  y  <  N )  <->  ( (
y  e.  ZZ  /\  0  <_  y )  /\  y  <  N ) )
27 fnn0ind.6 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  y  e.  NN0  /\  y  <  N )  ->  ( ch  ->  th ) )
28273expb 1163 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  ( y  e.  NN0  /\  y  <  N ) )  ->  ( ch  ->  th ) )
298, 26, 28syl2anbr 288 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  ZZ  /\  0  <_  N )  /\  ( ( y  e.  ZZ  /\  0  <_ 
y )  /\  y  <  N ) )  -> 
( ch  ->  th )
)
3029expcom 115 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  ZZ  /\  0  <_  y )  /\  y  <  N )  ->  ( ( N  e.  ZZ  /\  0  <_  N )  ->  ( ch  ->  th ) ) )
31303impa 1157 . . . . . . . . . . . . 13  |-  ( ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N )  ->  (
( N  e.  ZZ  /\  0  <_  N )  ->  ( ch  ->  th )
) )
3231expd 256 . . . . . . . . . . . 12  |-  ( ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N )  ->  ( N  e.  ZZ  ->  ( 0  <_  N  ->  ( ch  ->  th )
) ) )
3332impcom 124 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N ) )  ->  ( 0  <_  N  ->  ( ch  ->  th ) ) )
3424, 33mpd 13 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N ) )  ->  ( ch  ->  th ) )
3534adantll 465 . . . . . . . . 9  |-  ( ( ( 0  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  0  <_ 
y  /\  y  <  N ) )  ->  ( ch  ->  th ) )
364, 5, 6, 7, 11, 35fzind 9064 . . . . . . . 8  |-  ( ( ( 0  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  0  <_  K  /\  K  <_  N
) )  ->  ta )
373, 36mpanl1 428 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  0  <_  K  /\  K  <_  N ) )  ->  ta )
3837expcom 115 . . . . . 6  |-  ( ( K  e.  ZZ  /\  0  <_  K  /\  K  <_  N )  ->  ( N  e.  ZZ  ->  ta ) )
392, 38syl5 32 . . . . 5  |-  ( ( K  e.  ZZ  /\  0  <_  K  /\  K  <_  N )  ->  ( N  e.  NN0  ->  ta ) )
40393expa 1162 . . . 4  |-  ( ( ( K  e.  ZZ  /\  0  <_  K )  /\  K  <_  N )  ->  ( N  e. 
NN0  ->  ta ) )
411, 40sylanb 280 . . 3  |-  ( ( K  e.  NN0  /\  K  <_  N )  -> 
( N  e.  NN0  ->  ta ) )
4241impcom 124 . 2  |-  ( ( N  e.  NN0  /\  ( K  e.  NN0  /\  K  <_  N )
)  ->  ta )
43423impb 1158 1  |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  K  <_  N )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 943    = wceq 1312    e. wcel 1461   class class class wbr 3893  (class class class)co 5726   RRcr 7540   0cc0 7541   1c1 7542    + caddc 7544    < clt 7718    <_ cle 7719   NN0cn0 8875   ZZcz 8952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-addcom 7639  ax-addass 7641  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-0id 7647  ax-rnegex 7648  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-ltadd 7655
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-opab 3948  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-iota 5044  df-fun 5081  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-inn 8625  df-n0 8876  df-z 8953
This theorem is referenced by:  nn0seqcvgd  11562
  Copyright terms: Public domain W3C validator