ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnn0ind Unicode version

Theorem fnn0ind 9400
Description: Induction on the integers from  0 to  N inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
fnn0ind.1  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
fnn0ind.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
fnn0ind.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
fnn0ind.4  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
fnn0ind.5  |-  ( N  e.  NN0  ->  ps )
fnn0ind.6  |-  ( ( N  e.  NN0  /\  y  e.  NN0  /\  y  <  N )  ->  ( ch  ->  th ) )
Assertion
Ref Expression
fnn0ind  |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  K  <_  N )  ->  ta )
Distinct variable groups:    x, K    x, N, y    ch, x    ph, y    ps, x    ta, x    th, x
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    K( y)

Proof of Theorem fnn0ind
StepHypRef Expression
1 elnn0z 9297 . . . 4  |-  ( K  e.  NN0  <->  ( K  e.  ZZ  /\  0  <_  K ) )
2 nn0z 9304 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ZZ )
3 0z 9295 . . . . . . . 8  |-  0  e.  ZZ
4 fnn0ind.1 . . . . . . . . 9  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
5 fnn0ind.2 . . . . . . . . 9  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
6 fnn0ind.3 . . . . . . . . 9  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
7 fnn0ind.4 . . . . . . . . 9  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
8 elnn0z 9297 . . . . . . . . . . 11  |-  ( N  e.  NN0  <->  ( N  e.  ZZ  /\  0  <_  N ) )
9 fnn0ind.5 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ps )
108, 9sylbir 135 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  0  <_  N )  ->  ps )
11103adant1 1017 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ  /\  0  <_  N )  ->  ps )
12 zre 9288 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ZZ  ->  y  e.  RR )
13 zre 9288 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  N  e.  RR )
14 0re 7988 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
15 lelttr 8077 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  y  e.  RR  /\  N  e.  RR )  ->  (
( 0  <_  y  /\  y  <  N )  ->  0  <  N
) )
16 ltle 8076 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  RR  /\  N  e.  RR )  ->  ( 0  <  N  ->  0  <_  N )
)
17163adant2 1018 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  y  e.  RR  /\  N  e.  RR )  ->  (
0  <  N  ->  0  <_  N ) )
1815, 17syld 45 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  y  e.  RR  /\  N  e.  RR )  ->  (
( 0  <_  y  /\  y  <  N )  ->  0  <_  N
) )
1914, 18mp3an1 1335 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR  /\  N  e.  RR )  ->  ( ( 0  <_ 
y  /\  y  <  N )  ->  0  <_  N ) )
2012, 13, 19syl2an 289 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0  <_ 
y  /\  y  <  N )  ->  0  <_  N ) )
2120ex 115 . . . . . . . . . . . . . 14  |-  ( y  e.  ZZ  ->  ( N  e.  ZZ  ->  ( ( 0  <_  y  /\  y  <  N )  ->  0  <_  N
) ) )
2221com23 78 . . . . . . . . . . . . 13  |-  ( y  e.  ZZ  ->  (
( 0  <_  y  /\  y  <  N )  ->  ( N  e.  ZZ  ->  0  <_  N ) ) )
23223impib 1203 . . . . . . . . . . . 12  |-  ( ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N )  ->  ( N  e.  ZZ  ->  0  <_  N ) )
2423impcom 125 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N ) )  ->  0  <_  N
)
25 elnn0z 9297 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  NN0  <->  ( y  e.  ZZ  /\  0  <_ 
y ) )
2625anbi1i 458 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  NN0  /\  y  <  N )  <->  ( (
y  e.  ZZ  /\  0  <_  y )  /\  y  <  N ) )
27 fnn0ind.6 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  y  e.  NN0  /\  y  <  N )  ->  ( ch  ->  th ) )
28273expb 1206 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  ( y  e.  NN0  /\  y  <  N ) )  ->  ( ch  ->  th ) )
298, 26, 28syl2anbr 292 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  ZZ  /\  0  <_  N )  /\  ( ( y  e.  ZZ  /\  0  <_ 
y )  /\  y  <  N ) )  -> 
( ch  ->  th )
)
3029expcom 116 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  ZZ  /\  0  <_  y )  /\  y  <  N )  ->  ( ( N  e.  ZZ  /\  0  <_  N )  ->  ( ch  ->  th ) ) )
31303impa 1196 . . . . . . . . . . . . 13  |-  ( ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N )  ->  (
( N  e.  ZZ  /\  0  <_  N )  ->  ( ch  ->  th )
) )
3231expd 258 . . . . . . . . . . . 12  |-  ( ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N )  ->  ( N  e.  ZZ  ->  ( 0  <_  N  ->  ( ch  ->  th )
) ) )
3332impcom 125 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N ) )  ->  ( 0  <_  N  ->  ( ch  ->  th ) ) )
3424, 33mpd 13 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N ) )  ->  ( ch  ->  th ) )
3534adantll 476 . . . . . . . . 9  |-  ( ( ( 0  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  0  <_ 
y  /\  y  <  N ) )  ->  ( ch  ->  th ) )
364, 5, 6, 7, 11, 35fzind 9399 . . . . . . . 8  |-  ( ( ( 0  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  0  <_  K  /\  K  <_  N
) )  ->  ta )
373, 36mpanl1 434 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  0  <_  K  /\  K  <_  N ) )  ->  ta )
3837expcom 116 . . . . . 6  |-  ( ( K  e.  ZZ  /\  0  <_  K  /\  K  <_  N )  ->  ( N  e.  ZZ  ->  ta ) )
392, 38syl5 32 . . . . 5  |-  ( ( K  e.  ZZ  /\  0  <_  K  /\  K  <_  N )  ->  ( N  e.  NN0  ->  ta ) )
40393expa 1205 . . . 4  |-  ( ( ( K  e.  ZZ  /\  0  <_  K )  /\  K  <_  N )  ->  ( N  e. 
NN0  ->  ta ) )
411, 40sylanb 284 . . 3  |-  ( ( K  e.  NN0  /\  K  <_  N )  -> 
( N  e.  NN0  ->  ta ) )
4241impcom 125 . 2  |-  ( ( N  e.  NN0  /\  ( K  e.  NN0  /\  K  <_  N )
)  ->  ta )
43423impb 1201 1  |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  K  <_  N )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   class class class wbr 4018  (class class class)co 5897   RRcr 7841   0cc0 7842   1c1 7843    + caddc 7845    < clt 8023    <_ cle 8024   NN0cn0 9207   ZZcz 9284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-inn 8951  df-n0 9208  df-z 9285
This theorem is referenced by:  nn0seqcvgd  12076
  Copyright terms: Public domain W3C validator