| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnn0ind | Unicode version | ||
| Description: Induction on the integers
from |
| Ref | Expression |
|---|---|
| fnn0ind.1 |
|
| fnn0ind.2 |
|
| fnn0ind.3 |
|
| fnn0ind.4 |
|
| fnn0ind.5 |
|
| fnn0ind.6 |
|
| Ref | Expression |
|---|---|
| fnn0ind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0z 9339 |
. . . 4
| |
| 2 | nn0z 9346 |
. . . . . 6
| |
| 3 | 0z 9337 |
. . . . . . . 8
| |
| 4 | fnn0ind.1 |
. . . . . . . . 9
| |
| 5 | fnn0ind.2 |
. . . . . . . . 9
| |
| 6 | fnn0ind.3 |
. . . . . . . . 9
| |
| 7 | fnn0ind.4 |
. . . . . . . . 9
| |
| 8 | elnn0z 9339 |
. . . . . . . . . . 11
| |
| 9 | fnn0ind.5 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | sylbir 135 |
. . . . . . . . . 10
|
| 11 | 10 | 3adant1 1017 |
. . . . . . . . 9
|
| 12 | zre 9330 |
. . . . . . . . . . . . . . . 16
| |
| 13 | zre 9330 |
. . . . . . . . . . . . . . . 16
| |
| 14 | 0re 8026 |
. . . . . . . . . . . . . . . . 17
| |
| 15 | lelttr 8115 |
. . . . . . . . . . . . . . . . . 18
| |
| 16 | ltle 8114 |
. . . . . . . . . . . . . . . . . . 19
| |
| 17 | 16 | 3adant2 1018 |
. . . . . . . . . . . . . . . . . 18
|
| 18 | 15, 17 | syld 45 |
. . . . . . . . . . . . . . . . 17
|
| 19 | 14, 18 | mp3an1 1335 |
. . . . . . . . . . . . . . . 16
|
| 20 | 12, 13, 19 | syl2an 289 |
. . . . . . . . . . . . . . 15
|
| 21 | 20 | ex 115 |
. . . . . . . . . . . . . 14
|
| 22 | 21 | com23 78 |
. . . . . . . . . . . . 13
|
| 23 | 22 | 3impib 1203 |
. . . . . . . . . . . 12
|
| 24 | 23 | impcom 125 |
. . . . . . . . . . 11
|
| 25 | elnn0z 9339 |
. . . . . . . . . . . . . . . . 17
| |
| 26 | 25 | anbi1i 458 |
. . . . . . . . . . . . . . . 16
|
| 27 | fnn0ind.6 |
. . . . . . . . . . . . . . . . 17
| |
| 28 | 27 | 3expb 1206 |
. . . . . . . . . . . . . . . 16
|
| 29 | 8, 26, 28 | syl2anbr 292 |
. . . . . . . . . . . . . . 15
|
| 30 | 29 | expcom 116 |
. . . . . . . . . . . . . 14
|
| 31 | 30 | 3impa 1196 |
. . . . . . . . . . . . 13
|
| 32 | 31 | expd 258 |
. . . . . . . . . . . 12
|
| 33 | 32 | impcom 125 |
. . . . . . . . . . 11
|
| 34 | 24, 33 | mpd 13 |
. . . . . . . . . 10
|
| 35 | 34 | adantll 476 |
. . . . . . . . 9
|
| 36 | 4, 5, 6, 7, 11, 35 | fzind 9441 |
. . . . . . . 8
|
| 37 | 3, 36 | mpanl1 434 |
. . . . . . 7
|
| 38 | 37 | expcom 116 |
. . . . . 6
|
| 39 | 2, 38 | syl5 32 |
. . . . 5
|
| 40 | 39 | 3expa 1205 |
. . . 4
|
| 41 | 1, 40 | sylanb 284 |
. . 3
|
| 42 | 41 | impcom 125 |
. 2
|
| 43 | 42 | 3impb 1201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 |
| This theorem is referenced by: nn0seqcvgd 12209 |
| Copyright terms: Public domain | W3C validator |