| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnn0ind | Unicode version | ||
| Description: Induction on the integers
from |
| Ref | Expression |
|---|---|
| fnn0ind.1 |
|
| fnn0ind.2 |
|
| fnn0ind.3 |
|
| fnn0ind.4 |
|
| fnn0ind.5 |
|
| fnn0ind.6 |
|
| Ref | Expression |
|---|---|
| fnn0ind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0z 9459 |
. . . 4
| |
| 2 | nn0z 9466 |
. . . . . 6
| |
| 3 | 0z 9457 |
. . . . . . . 8
| |
| 4 | fnn0ind.1 |
. . . . . . . . 9
| |
| 5 | fnn0ind.2 |
. . . . . . . . 9
| |
| 6 | fnn0ind.3 |
. . . . . . . . 9
| |
| 7 | fnn0ind.4 |
. . . . . . . . 9
| |
| 8 | elnn0z 9459 |
. . . . . . . . . . 11
| |
| 9 | fnn0ind.5 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | sylbir 135 |
. . . . . . . . . 10
|
| 11 | 10 | 3adant1 1039 |
. . . . . . . . 9
|
| 12 | zre 9450 |
. . . . . . . . . . . . . . . 16
| |
| 13 | zre 9450 |
. . . . . . . . . . . . . . . 16
| |
| 14 | 0re 8146 |
. . . . . . . . . . . . . . . . 17
| |
| 15 | lelttr 8235 |
. . . . . . . . . . . . . . . . . 18
| |
| 16 | ltle 8234 |
. . . . . . . . . . . . . . . . . . 19
| |
| 17 | 16 | 3adant2 1040 |
. . . . . . . . . . . . . . . . . 18
|
| 18 | 15, 17 | syld 45 |
. . . . . . . . . . . . . . . . 17
|
| 19 | 14, 18 | mp3an1 1358 |
. . . . . . . . . . . . . . . 16
|
| 20 | 12, 13, 19 | syl2an 289 |
. . . . . . . . . . . . . . 15
|
| 21 | 20 | ex 115 |
. . . . . . . . . . . . . 14
|
| 22 | 21 | com23 78 |
. . . . . . . . . . . . 13
|
| 23 | 22 | 3impib 1225 |
. . . . . . . . . . . 12
|
| 24 | 23 | impcom 125 |
. . . . . . . . . . 11
|
| 25 | elnn0z 9459 |
. . . . . . . . . . . . . . . . 17
| |
| 26 | 25 | anbi1i 458 |
. . . . . . . . . . . . . . . 16
|
| 27 | fnn0ind.6 |
. . . . . . . . . . . . . . . . 17
| |
| 28 | 27 | 3expb 1228 |
. . . . . . . . . . . . . . . 16
|
| 29 | 8, 26, 28 | syl2anbr 292 |
. . . . . . . . . . . . . . 15
|
| 30 | 29 | expcom 116 |
. . . . . . . . . . . . . 14
|
| 31 | 30 | 3impa 1218 |
. . . . . . . . . . . . 13
|
| 32 | 31 | expd 258 |
. . . . . . . . . . . 12
|
| 33 | 32 | impcom 125 |
. . . . . . . . . . 11
|
| 34 | 24, 33 | mpd 13 |
. . . . . . . . . 10
|
| 35 | 34 | adantll 476 |
. . . . . . . . 9
|
| 36 | 4, 5, 6, 7, 11, 35 | fzind 9562 |
. . . . . . . 8
|
| 37 | 3, 36 | mpanl1 434 |
. . . . . . 7
|
| 38 | 37 | expcom 116 |
. . . . . 6
|
| 39 | 2, 38 | syl5 32 |
. . . . 5
|
| 40 | 39 | 3expa 1227 |
. . . 4
|
| 41 | 1, 40 | sylanb 284 |
. . 3
|
| 42 | 41 | impcom 125 |
. 2
|
| 43 | 42 | 3impb 1223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 |
| This theorem is referenced by: nn0seqcvgd 12563 |
| Copyright terms: Public domain | W3C validator |