ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnn0ind Unicode version

Theorem fnn0ind 9358
Description: Induction on the integers from  0 to  N inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
fnn0ind.1  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
fnn0ind.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
fnn0ind.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
fnn0ind.4  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
fnn0ind.5  |-  ( N  e.  NN0  ->  ps )
fnn0ind.6  |-  ( ( N  e.  NN0  /\  y  e.  NN0  /\  y  <  N )  ->  ( ch  ->  th ) )
Assertion
Ref Expression
fnn0ind  |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  K  <_  N )  ->  ta )
Distinct variable groups:    x, K    x, N, y    ch, x    ph, y    ps, x    ta, x    th, x
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    K( y)

Proof of Theorem fnn0ind
StepHypRef Expression
1 elnn0z 9255 . . . 4  |-  ( K  e.  NN0  <->  ( K  e.  ZZ  /\  0  <_  K ) )
2 nn0z 9262 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ZZ )
3 0z 9253 . . . . . . . 8  |-  0  e.  ZZ
4 fnn0ind.1 . . . . . . . . 9  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
5 fnn0ind.2 . . . . . . . . 9  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
6 fnn0ind.3 . . . . . . . . 9  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
7 fnn0ind.4 . . . . . . . . 9  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
8 elnn0z 9255 . . . . . . . . . . 11  |-  ( N  e.  NN0  <->  ( N  e.  ZZ  /\  0  <_  N ) )
9 fnn0ind.5 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ps )
108, 9sylbir 135 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  0  <_  N )  ->  ps )
11103adant1 1015 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ  /\  0  <_  N )  ->  ps )
12 zre 9246 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ZZ  ->  y  e.  RR )
13 zre 9246 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  N  e.  RR )
14 0re 7948 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
15 lelttr 8036 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  y  e.  RR  /\  N  e.  RR )  ->  (
( 0  <_  y  /\  y  <  N )  ->  0  <  N
) )
16 ltle 8035 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  RR  /\  N  e.  RR )  ->  ( 0  <  N  ->  0  <_  N )
)
17163adant2 1016 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  y  e.  RR  /\  N  e.  RR )  ->  (
0  <  N  ->  0  <_  N ) )
1815, 17syld 45 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  y  e.  RR  /\  N  e.  RR )  ->  (
( 0  <_  y  /\  y  <  N )  ->  0  <_  N
) )
1914, 18mp3an1 1324 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR  /\  N  e.  RR )  ->  ( ( 0  <_ 
y  /\  y  <  N )  ->  0  <_  N ) )
2012, 13, 19syl2an 289 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0  <_ 
y  /\  y  <  N )  ->  0  <_  N ) )
2120ex 115 . . . . . . . . . . . . . 14  |-  ( y  e.  ZZ  ->  ( N  e.  ZZ  ->  ( ( 0  <_  y  /\  y  <  N )  ->  0  <_  N
) ) )
2221com23 78 . . . . . . . . . . . . 13  |-  ( y  e.  ZZ  ->  (
( 0  <_  y  /\  y  <  N )  ->  ( N  e.  ZZ  ->  0  <_  N ) ) )
23223impib 1201 . . . . . . . . . . . 12  |-  ( ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N )  ->  ( N  e.  ZZ  ->  0  <_  N ) )
2423impcom 125 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N ) )  ->  0  <_  N
)
25 elnn0z 9255 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  NN0  <->  ( y  e.  ZZ  /\  0  <_ 
y ) )
2625anbi1i 458 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  NN0  /\  y  <  N )  <->  ( (
y  e.  ZZ  /\  0  <_  y )  /\  y  <  N ) )
27 fnn0ind.6 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  y  e.  NN0  /\  y  <  N )  ->  ( ch  ->  th ) )
28273expb 1204 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  ( y  e.  NN0  /\  y  <  N ) )  ->  ( ch  ->  th ) )
298, 26, 28syl2anbr 292 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  ZZ  /\  0  <_  N )  /\  ( ( y  e.  ZZ  /\  0  <_ 
y )  /\  y  <  N ) )  -> 
( ch  ->  th )
)
3029expcom 116 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  ZZ  /\  0  <_  y )  /\  y  <  N )  ->  ( ( N  e.  ZZ  /\  0  <_  N )  ->  ( ch  ->  th ) ) )
31303impa 1194 . . . . . . . . . . . . 13  |-  ( ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N )  ->  (
( N  e.  ZZ  /\  0  <_  N )  ->  ( ch  ->  th )
) )
3231expd 258 . . . . . . . . . . . 12  |-  ( ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N )  ->  ( N  e.  ZZ  ->  ( 0  <_  N  ->  ( ch  ->  th )
) ) )
3332impcom 125 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N ) )  ->  ( 0  <_  N  ->  ( ch  ->  th ) ) )
3424, 33mpd 13 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N ) )  ->  ( ch  ->  th ) )
3534adantll 476 . . . . . . . . 9  |-  ( ( ( 0  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  0  <_ 
y  /\  y  <  N ) )  ->  ( ch  ->  th ) )
364, 5, 6, 7, 11, 35fzind 9357 . . . . . . . 8  |-  ( ( ( 0  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  0  <_  K  /\  K  <_  N
) )  ->  ta )
373, 36mpanl1 434 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  0  <_  K  /\  K  <_  N ) )  ->  ta )
3837expcom 116 . . . . . 6  |-  ( ( K  e.  ZZ  /\  0  <_  K  /\  K  <_  N )  ->  ( N  e.  ZZ  ->  ta ) )
392, 38syl5 32 . . . . 5  |-  ( ( K  e.  ZZ  /\  0  <_  K  /\  K  <_  N )  ->  ( N  e.  NN0  ->  ta ) )
40393expa 1203 . . . 4  |-  ( ( ( K  e.  ZZ  /\  0  <_  K )  /\  K  <_  N )  ->  ( N  e. 
NN0  ->  ta ) )
411, 40sylanb 284 . . 3  |-  ( ( K  e.  NN0  /\  K  <_  N )  -> 
( N  e.  NN0  ->  ta ) )
4241impcom 125 . 2  |-  ( ( N  e.  NN0  /\  ( K  e.  NN0  /\  K  <_  N )
)  ->  ta )
43423impb 1199 1  |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  K  <_  N )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4000  (class class class)co 5869   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    < clt 7982    <_ cle 7983   NN0cn0 9165   ZZcz 9242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243
This theorem is referenced by:  nn0seqcvgd  12024
  Copyright terms: Public domain W3C validator