| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpanl1 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpanl1.1 | ⊢ 𝜑 |
| mpanl1.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl1.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | jctl 314 | . 2 ⊢ (𝜓 → (𝜑 ∧ 𝜓)) |
| 3 | mpanl1.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 283 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: mpanl12 436 ercnv 6709 rec11api 8908 divdiv23apzi 8920 recp1lt1 9054 divgt0i 9065 divge0i 9066 ltreci 9067 lereci 9068 lt2msqi 9069 le2msqi 9070 msq11i 9071 ltdiv23i 9081 fnn0ind 9571 elfzp1b 10301 elfzm1b 10302 sqrt11i 11651 sqrtmuli 11652 sqrtmsq2i 11654 sqrtlei 11655 sqrtlti 11656 |
| Copyright terms: Public domain | W3C validator |