ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpanl1 GIF version

Theorem mpanl1 434
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Hypotheses
Ref Expression
mpanl1.1 𝜑
mpanl1.2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
mpanl1 ((𝜓𝜒) → 𝜃)

Proof of Theorem mpanl1
StepHypRef Expression
1 mpanl1.1 . . 3 𝜑
21jctl 314 . 2 (𝜓 → (𝜑𝜓))
3 mpanl1.2 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
42, 3sylan 283 1 ((𝜓𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  mpanl12  436  ercnv  6709  rec11api  8908  divdiv23apzi  8920  recp1lt1  9054  divgt0i  9065  divge0i  9066  ltreci  9067  lereci  9068  lt2msqi  9069  le2msqi  9070  msq11i  9071  ltdiv23i  9081  fnn0ind  9571  elfzp1b  10301  elfzm1b  10302  sqrt11i  11651  sqrtmuli  11652  sqrtmsq2i  11654  sqrtlei  11655  sqrtlti  11656
  Copyright terms: Public domain W3C validator