| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpanl1 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpanl1.1 | ⊢ 𝜑 |
| mpanl1.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl1.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | jctl 314 | . 2 ⊢ (𝜓 → (𝜑 ∧ 𝜓)) |
| 3 | mpanl1.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 283 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: mpanl12 436 ercnv 6671 rec11api 8868 divdiv23apzi 8880 recp1lt1 9014 divgt0i 9025 divge0i 9026 ltreci 9027 lereci 9028 lt2msqi 9029 le2msqi 9030 msq11i 9031 ltdiv23i 9041 fnn0ind 9531 elfzp1b 10261 elfzm1b 10262 sqrt11i 11609 sqrtmuli 11610 sqrtmsq2i 11612 sqrtlei 11613 sqrtlti 11614 |
| Copyright terms: Public domain | W3C validator |