![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpanl1 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanl1.1 | ⊢ 𝜑 |
mpanl1.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl1.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | jctl 310 | . 2 ⊢ (𝜓 → (𝜑 ∧ 𝜓)) |
3 | mpanl1.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | sylan 279 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: mpanl12 430 ercnv 6380 rec11api 8374 divdiv23apzi 8386 recp1lt1 8515 divgt0i 8526 divge0i 8527 ltreci 8528 lereci 8529 lt2msqi 8530 le2msqi 8531 msq11i 8532 ltdiv23i 8542 fnn0ind 9019 elfzp1b 9718 elfzm1b 9719 sqrt11i 10744 sqrtmuli 10745 sqrtmsq2i 10747 sqrtlei 10748 sqrtlti 10749 |
Copyright terms: Public domain | W3C validator |