| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpanl1 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) | 
| Ref | Expression | 
|---|---|
| mpanl1.1 | ⊢ 𝜑 | 
| mpanl1.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
| Ref | Expression | 
|---|---|
| mpanl1 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpanl1.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | jctl 314 | . 2 ⊢ (𝜓 → (𝜑 ∧ 𝜓)) | 
| 3 | mpanl1.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | sylan 283 | 1 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem is referenced by: mpanl12 436 ercnv 6613 rec11api 8780 divdiv23apzi 8792 recp1lt1 8926 divgt0i 8937 divge0i 8938 ltreci 8939 lereci 8940 lt2msqi 8941 le2msqi 8942 msq11i 8943 ltdiv23i 8953 fnn0ind 9442 elfzp1b 10172 elfzm1b 10173 sqrt11i 11297 sqrtmuli 11298 sqrtmsq2i 11300 sqrtlei 11301 sqrtlti 11302 | 
| Copyright terms: Public domain | W3C validator |