ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzm1b Unicode version

Theorem elfzm1b 10054
Description: An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
elfzm1b  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 1 ... N )  <-> 
( K  -  1 )  e.  ( 0 ... ( N  - 
1 ) ) ) )

Proof of Theorem elfzm1b
StepHypRef Expression
1 1z 9238 . . . 4  |-  1  e.  ZZ
2 fzsubel 10016 . . . . 5  |-  ( ( ( 1  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( K  e.  ( 1 ... N )  <-> 
( K  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) ) ) )
31, 2mpanl1 432 . . . 4  |-  ( ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  1  e.  ZZ ) )  ->  ( K  e.  ( 1 ... N
)  <->  ( K  - 
1 )  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ) )
41, 3mpanr2 436 . . 3  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( K  e.  ( 1 ... N )  <-> 
( K  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) ) ) )
5 1m1e0 8947 . . . . 5  |-  ( 1  -  1 )  =  0
65oveq1i 5863 . . . 4  |-  ( ( 1  -  1 ) ... ( N  - 
1 ) )  =  ( 0 ... ( N  -  1 ) )
76eleq2i 2237 . . 3  |-  ( ( K  -  1 )  e.  ( ( 1  -  1 ) ... ( N  -  1 ) )  <->  ( K  -  1 )  e.  ( 0 ... ( N  -  1 ) ) )
84, 7bitrdi 195 . 2  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( K  e.  ( 1 ... N )  <-> 
( K  -  1 )  e.  ( 0 ... ( N  - 
1 ) ) ) )
98ancoms 266 1  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 1 ... N )  <-> 
( K  -  1 )  e.  ( 0 ... ( N  - 
1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2141  (class class class)co 5853   0cc0 7774   1c1 7775    - cmin 8090   ZZcz 9212   ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-fz 9966
This theorem is referenced by:  elfzom1b  10185  bcpasc  10700
  Copyright terms: Public domain W3C validator