ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzm1b Unicode version

Theorem elfzm1b 10101
Description: An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
elfzm1b  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 1 ... N )  <-> 
( K  -  1 )  e.  ( 0 ... ( N  - 
1 ) ) ) )

Proof of Theorem elfzm1b
StepHypRef Expression
1 1z 9282 . . . 4  |-  1  e.  ZZ
2 fzsubel 10063 . . . . 5  |-  ( ( ( 1  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( K  e.  ( 1 ... N )  <-> 
( K  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) ) ) )
31, 2mpanl1 434 . . . 4  |-  ( ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  1  e.  ZZ ) )  ->  ( K  e.  ( 1 ... N
)  <->  ( K  - 
1 )  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ) )
41, 3mpanr2 438 . . 3  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( K  e.  ( 1 ... N )  <-> 
( K  -  1 )  e.  ( ( 1  -  1 ) ... ( N  - 
1 ) ) ) )
5 1m1e0 8991 . . . . 5  |-  ( 1  -  1 )  =  0
65oveq1i 5888 . . . 4  |-  ( ( 1  -  1 ) ... ( N  - 
1 ) )  =  ( 0 ... ( N  -  1 ) )
76eleq2i 2244 . . 3  |-  ( ( K  -  1 )  e.  ( ( 1  -  1 ) ... ( N  -  1 ) )  <->  ( K  -  1 )  e.  ( 0 ... ( N  -  1 ) ) )
84, 7bitrdi 196 . 2  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( K  e.  ( 1 ... N )  <-> 
( K  -  1 )  e.  ( 0 ... ( N  - 
1 ) ) ) )
98ancoms 268 1  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( 1 ... N )  <-> 
( K  -  1 )  e.  ( 0 ... ( N  - 
1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148  (class class class)co 5878   0cc0 7814   1c1 7815    - cmin 8131   ZZcz 9256   ...cfz 10011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-inn 8923  df-n0 9180  df-z 9257  df-fz 10012
This theorem is referenced by:  elfzom1b  10232  bcpasc  10749
  Copyright terms: Public domain W3C validator