| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpanl12 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mpanl12.1 |
|
| mpanl12.2 |
|
| mpanl12.3 |
|
| Ref | Expression |
|---|---|
| mpanl12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl12.2 |
. 2
| |
| 2 | mpanl12.1 |
. . 3
| |
| 3 | mpanl12.3 |
. . 3
| |
| 4 | 2, 3 | mpanl1 434 |
. 2
|
| 5 | 1, 4 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: reuun1 3454 ordtri2orexmid 4570 opthreg 4603 ordtri2or2exmid 4618 ontri2orexmidim 4619 fvtp1 5794 nq0m0r 7568 nq02m 7577 gt0srpr 7860 map2psrprg 7917 pitoregt0 7961 axcnre 7993 addgt0 8520 addgegt0 8521 addgtge0 8522 addge0 8523 addgt0i 8560 addge0i 8561 addgegt0i 8562 add20i 8564 mulge0i 8692 recextlem1 8723 recap0 8757 recdivap 8790 recgt1 8969 prodgt0i 8980 prodge0i 8981 iccshftri 10116 iccshftli 10118 iccdili 10120 icccntri 10122 mulexpzap 10722 expaddzap 10726 m1expeven 10729 iexpcyc 10787 amgm2 11371 ege2le3 11924 sqnprm 12400 lmres 14662 2logb9irrap 15391 |
| Copyright terms: Public domain | W3C validator |