| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpanl12 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mpanl12.1 |
|
| mpanl12.2 |
|
| mpanl12.3 |
|
| Ref | Expression |
|---|---|
| mpanl12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl12.2 |
. 2
| |
| 2 | mpanl12.1 |
. . 3
| |
| 3 | mpanl12.3 |
. . 3
| |
| 4 | 2, 3 | mpanl1 434 |
. 2
|
| 5 | 1, 4 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: reuun1 3486 ordtri2orexmid 4614 opthreg 4647 ordtri2or2exmid 4662 ontri2orexmidim 4663 fvtp1 5849 nq0m0r 7639 nq02m 7648 gt0srpr 7931 map2psrprg 7988 pitoregt0 8032 axcnre 8064 addgt0 8591 addgegt0 8592 addgtge0 8593 addge0 8594 addgt0i 8631 addge0i 8632 addgegt0i 8633 add20i 8635 mulge0i 8763 recextlem1 8794 recap0 8828 recdivap 8861 recgt1 9040 prodgt0i 9051 prodge0i 9052 iccshftri 10187 iccshftli 10189 iccdili 10191 icccntri 10193 mulexpzap 10796 expaddzap 10800 m1expeven 10803 iexpcyc 10861 amgm2 11624 ege2le3 12177 sqnprm 12653 lmres 14916 2logb9irrap 15645 |
| Copyright terms: Public domain | W3C validator |