| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpanl12 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mpanl12.1 |
|
| mpanl12.2 |
|
| mpanl12.3 |
|
| Ref | Expression |
|---|---|
| mpanl12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl12.2 |
. 2
| |
| 2 | mpanl12.1 |
. . 3
| |
| 3 | mpanl12.3 |
. . 3
| |
| 4 | 2, 3 | mpanl1 434 |
. 2
|
| 5 | 1, 4 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: reuun1 3446 ordtri2orexmid 4560 opthreg 4593 ordtri2or2exmid 4608 ontri2orexmidim 4609 fvtp1 5776 nq0m0r 7540 nq02m 7549 gt0srpr 7832 map2psrprg 7889 pitoregt0 7933 axcnre 7965 addgt0 8492 addgegt0 8493 addgtge0 8494 addge0 8495 addgt0i 8532 addge0i 8533 addgegt0i 8534 add20i 8536 mulge0i 8664 recextlem1 8695 recap0 8729 recdivap 8762 recgt1 8941 prodgt0i 8952 prodge0i 8953 iccshftri 10087 iccshftli 10089 iccdili 10091 icccntri 10093 mulexpzap 10688 expaddzap 10692 m1expeven 10695 iexpcyc 10753 amgm2 11300 ege2le3 11853 sqnprm 12329 lmres 14568 2logb9irrap 15297 |
| Copyright terms: Public domain | W3C validator |