ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercnv Unicode version

Theorem ercnv 6613
Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ercnv  |-  ( R  Er  A  ->  `' R  =  R )

Proof of Theorem ercnv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 errel 6601 . 2  |-  ( R  Er  A  ->  Rel  R )
2 relcnv 5047 . . 3  |-  Rel  `' R
3 id 19 . . . . . 6  |-  ( R  Er  A  ->  R  Er  A )
43ersymb 6606 . . . . 5  |-  ( R  Er  A  ->  (
y R x  <->  x R
y ) )
5 vex 2766 . . . . . . 7  |-  x  e. 
_V
6 vex 2766 . . . . . . 7  |-  y  e. 
_V
75, 6brcnv 4849 . . . . . 6  |-  ( x `' R y  <->  y R x )
8 df-br 4034 . . . . . 6  |-  ( x `' R y  <->  <. x ,  y >.  e.  `' R )
97, 8bitr3i 186 . . . . 5  |-  ( y R x  <->  <. x ,  y >.  e.  `' R )
10 df-br 4034 . . . . 5  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
114, 9, 103bitr3g 222 . . . 4  |-  ( R  Er  A  ->  ( <. x ,  y >.  e.  `' R  <->  <. x ,  y
>.  e.  R ) )
1211eqrelrdv2 4762 . . 3  |-  ( ( ( Rel  `' R  /\  Rel  R )  /\  R  Er  A )  ->  `' R  =  R
)
132, 12mpanl1 434 . 2  |-  ( ( Rel  R  /\  R  Er  A )  ->  `' R  =  R )
141, 13mpancom 422 1  |-  ( R  Er  A  ->  `' R  =  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   <.cop 3625   class class class wbr 4033   `'ccnv 4662   Rel wrel 4668    Er wer 6589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-er 6592
This theorem is referenced by:  errn  6614
  Copyright terms: Public domain W3C validator