ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercnv Unicode version

Theorem ercnv 6608
Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ercnv  |-  ( R  Er  A  ->  `' R  =  R )

Proof of Theorem ercnv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 errel 6596 . 2  |-  ( R  Er  A  ->  Rel  R )
2 relcnv 5043 . . 3  |-  Rel  `' R
3 id 19 . . . . . 6  |-  ( R  Er  A  ->  R  Er  A )
43ersymb 6601 . . . . 5  |-  ( R  Er  A  ->  (
y R x  <->  x R
y ) )
5 vex 2763 . . . . . . 7  |-  x  e. 
_V
6 vex 2763 . . . . . . 7  |-  y  e. 
_V
75, 6brcnv 4845 . . . . . 6  |-  ( x `' R y  <->  y R x )
8 df-br 4030 . . . . . 6  |-  ( x `' R y  <->  <. x ,  y >.  e.  `' R )
97, 8bitr3i 186 . . . . 5  |-  ( y R x  <->  <. x ,  y >.  e.  `' R )
10 df-br 4030 . . . . 5  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
114, 9, 103bitr3g 222 . . . 4  |-  ( R  Er  A  ->  ( <. x ,  y >.  e.  `' R  <->  <. x ,  y
>.  e.  R ) )
1211eqrelrdv2 4758 . . 3  |-  ( ( ( Rel  `' R  /\  Rel  R )  /\  R  Er  A )  ->  `' R  =  R
)
132, 12mpanl1 434 . 2  |-  ( ( Rel  R  /\  R  Er  A )  ->  `' R  =  R )
141, 13mpancom 422 1  |-  ( R  Er  A  ->  `' R  =  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   <.cop 3621   class class class wbr 4029   `'ccnv 4658   Rel wrel 4664    Er wer 6584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-er 6587
This theorem is referenced by:  errn  6609
  Copyright terms: Public domain W3C validator