ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercnv Unicode version

Theorem ercnv 6664
Description: The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ercnv  |-  ( R  Er  A  ->  `' R  =  R )

Proof of Theorem ercnv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 errel 6652 . 2  |-  ( R  Er  A  ->  Rel  R )
2 relcnv 5079 . . 3  |-  Rel  `' R
3 id 19 . . . . . 6  |-  ( R  Er  A  ->  R  Er  A )
43ersymb 6657 . . . . 5  |-  ( R  Er  A  ->  (
y R x  <->  x R
y ) )
5 vex 2779 . . . . . . 7  |-  x  e. 
_V
6 vex 2779 . . . . . . 7  |-  y  e. 
_V
75, 6brcnv 4879 . . . . . 6  |-  ( x `' R y  <->  y R x )
8 df-br 4060 . . . . . 6  |-  ( x `' R y  <->  <. x ,  y >.  e.  `' R )
97, 8bitr3i 186 . . . . 5  |-  ( y R x  <->  <. x ,  y >.  e.  `' R )
10 df-br 4060 . . . . 5  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
114, 9, 103bitr3g 222 . . . 4  |-  ( R  Er  A  ->  ( <. x ,  y >.  e.  `' R  <->  <. x ,  y
>.  e.  R ) )
1211eqrelrdv2 4792 . . 3  |-  ( ( ( Rel  `' R  /\  Rel  R )  /\  R  Er  A )  ->  `' R  =  R
)
132, 12mpanl1 434 . 2  |-  ( ( Rel  R  /\  R  Er  A )  ->  `' R  =  R )
141, 13mpancom 422 1  |-  ( R  Er  A  ->  `' R  =  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   <.cop 3646   class class class wbr 4059   `'ccnv 4692   Rel wrel 4698    Er wer 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-er 6643
This theorem is referenced by:  errn  6665
  Copyright terms: Public domain W3C validator