ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpanr1 Unicode version

Theorem mpanr1 437
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
mpanr1.1  |-  ps
mpanr1.2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
Assertion
Ref Expression
mpanr1  |-  ( (
ph  /\  ch )  ->  th )

Proof of Theorem mpanr1
StepHypRef Expression
1 mpanr1.1 . 2  |-  ps
2 mpanr1.2 . . 3  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
32anassrs 400 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
41, 3mpanl2 435 1  |-  ( (
ph  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  mpanr12  439  axcnre  7882  rec11api  8712  divdiv23apzi  8724  recp1lt1  8858  divgt0i  8869  divge0i  8870  ltreci  8871  lereci  8872  lt2msqi  8873  le2msqi  8874  msq11i  8875  ltdiv23i  8885  ge0gtmnf  9825  sqrt11i  11143  sqrtmuli  11144  sqrtmsq2i  11146  sqrtlei  11147  sqrtlti  11148  cos01gt0  11772
  Copyright terms: Public domain W3C validator