ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpanr1 Unicode version

Theorem mpanr1 431
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
mpanr1.1  |-  ps
mpanr1.2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
Assertion
Ref Expression
mpanr1  |-  ( (
ph  /\  ch )  ->  th )

Proof of Theorem mpanr1
StepHypRef Expression
1 mpanr1.1 . 2  |-  ps
2 mpanr1.2 . . 3  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
32anassrs 395 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
41, 3mpanl2 429 1  |-  ( (
ph  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  mpanr12  433  axcnre  7616  rec11api  8426  divdiv23apzi  8438  recp1lt1  8567  divgt0i  8578  divge0i  8579  ltreci  8580  lereci  8581  lt2msqi  8582  le2msqi  8583  msq11i  8584  ltdiv23i  8594  ge0gtmnf  9499  sqrt11i  10796  sqrtmuli  10797  sqrtmsq2i  10799  sqrtlei  10800  sqrtlti  10801  cos01gt0  11320
  Copyright terms: Public domain W3C validator