ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpanr1 Unicode version

Theorem mpanr1 437
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
mpanr1.1  |-  ps
mpanr1.2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
Assertion
Ref Expression
mpanr1  |-  ( (
ph  /\  ch )  ->  th )

Proof of Theorem mpanr1
StepHypRef Expression
1 mpanr1.1 . 2  |-  ps
2 mpanr1.2 . . 3  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
32anassrs 400 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
41, 3mpanl2 435 1  |-  ( (
ph  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  mpanr12  439  axcnre  7943  rec11api  8774  divdiv23apzi  8786  recp1lt1  8920  divgt0i  8931  divge0i  8932  ltreci  8933  lereci  8934  lt2msqi  8935  le2msqi  8936  msq11i  8937  ltdiv23i  8947  ge0gtmnf  9892  sqrt11i  11279  sqrtmuli  11280  sqrtmsq2i  11282  sqrtlei  11283  sqrtlti  11284  cos01gt0  11909
  Copyright terms: Public domain W3C validator