ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpanr1 GIF version

Theorem mpanr1 437
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
mpanr1.1 𝜓
mpanr1.2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
mpanr1 ((𝜑𝜒) → 𝜃)

Proof of Theorem mpanr1
StepHypRef Expression
1 mpanr1.1 . 2 𝜓
2 mpanr1.2 . . 3 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
32anassrs 400 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
41, 3mpanl2 435 1 ((𝜑𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  mpanr12  439  axcnre  7967  rec11api  8799  divdiv23apzi  8811  recp1lt1  8945  divgt0i  8956  divge0i  8957  ltreci  8958  lereci  8959  lt2msqi  8960  le2msqi  8961  msq11i  8962  ltdiv23i  8972  ge0gtmnf  9917  sqrt11i  11316  sqrtmuli  11317  sqrtmsq2i  11319  sqrtlei  11320  sqrtlti  11321  cos01gt0  11947
  Copyright terms: Public domain W3C validator