![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpanr1 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
mpanr1.1 | ⊢ 𝜓 |
mpanr1.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr1.1 | . 2 ⊢ 𝜓 | |
2 | mpanr1.2 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 2 | anassrs 393 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpanl2 427 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: mpanr12 431 axcnre 7479 rec11api 8283 divdiv23apzi 8295 recp1lt1 8423 divgt0i 8434 divge0i 8435 ltreci 8436 lereci 8437 lt2msqi 8438 le2msqi 8439 msq11i 8440 ltdiv23i 8450 ge0gtmnf 9348 sqrt11i 10628 sqrtmuli 10629 sqrtmsq2i 10631 sqrtlei 10632 sqrtlti 10633 cos01gt0 11116 |
Copyright terms: Public domain | W3C validator |