ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpanr1 GIF version

Theorem mpanr1 437
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
mpanr1.1 𝜓
mpanr1.2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
mpanr1 ((𝜑𝜒) → 𝜃)

Proof of Theorem mpanr1
StepHypRef Expression
1 mpanr1.1 . 2 𝜓
2 mpanr1.2 . . 3 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
32anassrs 400 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
41, 3mpanl2 435 1 ((𝜑𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  mpanr12  439  axcnre  8064  rec11api  8896  divdiv23apzi  8908  recp1lt1  9042  divgt0i  9053  divge0i  9054  ltreci  9055  lereci  9056  lt2msqi  9057  le2msqi  9058  msq11i  9059  ltdiv23i  9069  ge0gtmnf  10015  sqrt11i  11638  sqrtmuli  11639  sqrtmsq2i  11641  sqrtlei  11642  sqrtlti  11643  cos01gt0  12269
  Copyright terms: Public domain W3C validator