![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpanr1 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
mpanr1.1 | ⊢ 𝜓 |
mpanr1.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr1.1 | . 2 ⊢ 𝜓 | |
2 | mpanr1.2 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 2 | anassrs 400 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpanl2 435 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: mpanr12 439 axcnre 7941 rec11api 8772 divdiv23apzi 8784 recp1lt1 8918 divgt0i 8929 divge0i 8930 ltreci 8931 lereci 8932 lt2msqi 8933 le2msqi 8934 msq11i 8935 ltdiv23i 8945 ge0gtmnf 9889 sqrt11i 11276 sqrtmuli 11277 sqrtmsq2i 11279 sqrtlei 11280 sqrtlti 11281 cos01gt0 11906 |
Copyright terms: Public domain | W3C validator |