| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpanr1 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| mpanr1.1 | ⊢ 𝜓 |
| mpanr1.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr1.1 | . 2 ⊢ 𝜓 | |
| 2 | mpanr1.2 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 2 | anassrs 400 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpanl2 435 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: mpanr12 439 axcnre 8014 rec11api 8846 divdiv23apzi 8858 recp1lt1 8992 divgt0i 9003 divge0i 9004 ltreci 9005 lereci 9006 lt2msqi 9007 le2msqi 9008 msq11i 9009 ltdiv23i 9019 ge0gtmnf 9965 sqrt11i 11518 sqrtmuli 11519 sqrtmsq2i 11521 sqrtlei 11522 sqrtlti 11523 cos01gt0 12149 |
| Copyright terms: Public domain | W3C validator |