ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpanr1 GIF version

Theorem mpanr1 437
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
mpanr1.1 𝜓
mpanr1.2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
mpanr1 ((𝜑𝜒) → 𝜃)

Proof of Theorem mpanr1
StepHypRef Expression
1 mpanr1.1 . 2 𝜓
2 mpanr1.2 . . 3 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
32anassrs 400 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
41, 3mpanl2 435 1 ((𝜑𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  mpanr12  439  axcnre  8014  rec11api  8846  divdiv23apzi  8858  recp1lt1  8992  divgt0i  9003  divge0i  9004  ltreci  9005  lereci  9006  lt2msqi  9007  le2msqi  9008  msq11i  9009  ltdiv23i  9019  ge0gtmnf  9965  sqrt11i  11518  sqrtmuli  11519  sqrtmsq2i  11521  sqrtlei  11522  sqrtlti  11523  cos01gt0  12149
  Copyright terms: Public domain W3C validator