ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpanr1 GIF version

Theorem mpanr1 434
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
mpanr1.1 𝜓
mpanr1.2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
mpanr1 ((𝜑𝜒) → 𝜃)

Proof of Theorem mpanr1
StepHypRef Expression
1 mpanr1.1 . 2 𝜓
2 mpanr1.2 . . 3 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
32anassrs 398 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
41, 3mpanl2 432 1 ((𝜑𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  mpanr12  436  axcnre  7822  rec11api  8649  divdiv23apzi  8661  recp1lt1  8794  divgt0i  8805  divge0i  8806  ltreci  8807  lereci  8808  lt2msqi  8809  le2msqi  8810  msq11i  8811  ltdiv23i  8821  ge0gtmnf  9759  sqrt11i  11074  sqrtmuli  11075  sqrtmsq2i  11077  sqrtlei  11078  sqrtlti  11079  cos01gt0  11703
  Copyright terms: Public domain W3C validator