| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpanr1 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| mpanr1.1 | ⊢ 𝜓 |
| mpanr1.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr1.1 | . 2 ⊢ 𝜓 | |
| 2 | mpanr1.2 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 2 | anassrs 400 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpanl2 435 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: mpanr12 439 axcnre 7965 rec11api 8797 divdiv23apzi 8809 recp1lt1 8943 divgt0i 8954 divge0i 8955 ltreci 8956 lereci 8957 lt2msqi 8958 le2msqi 8959 msq11i 8960 ltdiv23i 8970 ge0gtmnf 9915 sqrt11i 11314 sqrtmuli 11315 sqrtmsq2i 11317 sqrtlei 11318 sqrtlti 11319 cos01gt0 11945 |
| Copyright terms: Public domain | W3C validator |