ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ge0gtmnf Unicode version

Theorem ge0gtmnf 9722
Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
ge0gtmnf  |-  ( ( A  e.  RR*  /\  0  <_  A )  -> -oo  <  A )

Proof of Theorem ge0gtmnf
StepHypRef Expression
1 mnflt0 9686 . 2  |- -oo  <  0
2 mnfxr 7929 . . . 4  |- -oo  e.  RR*
3 0xr 7919 . . . 4  |-  0  e.  RR*
4 xrltletr 9706 . . . 4  |-  ( ( -oo  e.  RR*  /\  0  e.  RR*  /\  A  e. 
RR* )  ->  (
( -oo  <  0  /\  0  <_  A )  -> -oo  <  A ) )
52, 3, 4mp3an12 1309 . . 3  |-  ( A  e.  RR*  ->  ( ( -oo  <  0  /\  0  <_  A )  -> -oo  <  A ) )
65imp 123 . 2  |-  ( ( A  e.  RR*  /\  ( -oo  <  0  /\  0  <_  A ) )  -> -oo  <  A )
71, 6mpanr1 434 1  |-  ( ( A  e.  RR*  /\  0  <_  A )  -> -oo  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2128   class class class wbr 3965   0cc0 7727   -oocmnf 7905   RR*cxr 7906    < clt 7907    <_ cle 7908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7818  ax-resscn 7819  ax-1re 7821  ax-addrcl 7824  ax-rnegex 7836  ax-pre-ltirr 7839  ax-pre-ltwlin 7840  ax-pre-lttrn 7841
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-po 4256  df-iso 4257  df-xp 4591  df-cnv 4593  df-pnf 7909  df-mnf 7910  df-xr 7911  df-ltxr 7912  df-le 7913
This theorem is referenced by:  ge0nemnf  9723  xrrege0  9724
  Copyright terms: Public domain W3C validator