ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ge0gtmnf Unicode version

Theorem ge0gtmnf 9759
Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
ge0gtmnf  |-  ( ( A  e.  RR*  /\  0  <_  A )  -> -oo  <  A )

Proof of Theorem ge0gtmnf
StepHypRef Expression
1 mnflt0 9720 . 2  |- -oo  <  0
2 mnfxr 7955 . . . 4  |- -oo  e.  RR*
3 0xr 7945 . . . 4  |-  0  e.  RR*
4 xrltletr 9743 . . . 4  |-  ( ( -oo  e.  RR*  /\  0  e.  RR*  /\  A  e. 
RR* )  ->  (
( -oo  <  0  /\  0  <_  A )  -> -oo  <  A ) )
52, 3, 4mp3an12 1317 . . 3  |-  ( A  e.  RR*  ->  ( ( -oo  <  0  /\  0  <_  A )  -> -oo  <  A ) )
65imp 123 . 2  |-  ( ( A  e.  RR*  /\  ( -oo  <  0  /\  0  <_  A ) )  -> -oo  <  A )
71, 6mpanr1 434 1  |-  ( ( A  e.  RR*  /\  0  <_  A )  -> -oo  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   class class class wbr 3982   0cc0 7753   -oocmnf 7931   RR*cxr 7932    < clt 7933    <_ cle 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-rnegex 7862  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-po 4274  df-iso 4275  df-xp 4610  df-cnv 4612  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939
This theorem is referenced by:  ge0nemnf  9760  xrrege0  9761  pcgcd1  12259
  Copyright terms: Public domain W3C validator