ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpanr2 Unicode version

Theorem mpanr2 438
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Hypotheses
Ref Expression
mpanr2.1  |-  ch
mpanr2.2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
Assertion
Ref Expression
mpanr2  |-  ( (
ph  /\  ps )  ->  th )

Proof of Theorem mpanr2
StepHypRef Expression
1 mpanr2.1 . . 3  |-  ch
21jctr 315 . 2  |-  ( ps 
->  ( ps  /\  ch ) )
3 mpanr2.2 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
42, 3sylan2 286 1  |-  ( (
ph  /\  ps )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  op1steq  6265  fpmg  6761  pmresg  6763  pw2f1odc  6932  pm54.43  7298  prarloclemarch2  7532  prarloclemlt  7606  prsradd  7899  muleqadd  8741  divdivap1  8796  addltmul  9274  elfzp1b  10219  elfzm1b  10220  expp1zap  10733  expm1ap  10734  fiinbas  14521  opnneissb  14627  blssec  14910
  Copyright terms: Public domain W3C validator