ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos01gt0 Unicode version

Theorem cos01gt0 11218
Description: The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos01gt0  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( cos `  A
) )

Proof of Theorem cos01gt0
StepHypRef Expression
1 0xr 7631 . . . . . . . . . 10  |-  0  e.  RR*
2 1re 7584 . . . . . . . . . 10  |-  1  e.  RR
3 elioc2 9502 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
41, 2, 3mp2an 418 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
54simp1bi 961 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
65resqcld 10243 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  e.  RR )
76recnd 7613 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  e.  CC )
8 2cn 8591 . . . . . . 7  |-  2  e.  CC
9 3cn 8595 . . . . . . . 8  |-  3  e.  CC
10 3ap0 8616 . . . . . . . 8  |-  3 #  0
119, 10pm3.2i 267 . . . . . . 7  |-  ( 3  e.  CC  /\  3 #  0 )
12 div12ap 8258 . . . . . . 7  |-  ( ( 2  e.  CC  /\  ( A ^ 2 )  e.  CC  /\  (
3  e.  CC  /\  3 #  0 ) )  -> 
( 2  x.  (
( A ^ 2 )  /  3 ) )  =  ( ( A ^ 2 )  x.  ( 2  / 
3 ) ) )
138, 11, 12mp3an13 1271 . . . . . 6  |-  ( ( A ^ 2 )  e.  CC  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  =  ( ( A ^ 2 )  x.  ( 2  /  3
) ) )
147, 13syl 14 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  =  ( ( A ^ 2 )  x.  ( 2  /  3
) ) )
15 2z 8876 . . . . . . . . . 10  |-  2  e.  ZZ
16 expgt0 10119 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  2  e.  ZZ  /\  0  <  A )  ->  0  <  ( A ^ 2 ) )
1715, 16mp3an2 1268 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( A ^ 2 ) )
18173adant3 966 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  1 )  ->  0  <  ( A ^ 2 ) )
194, 18sylbi 120 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( A ^ 2 ) )
20 2lt3 8684 . . . . . . . . . 10  |-  2  <  3
21 2re 8590 . . . . . . . . . . 11  |-  2  e.  RR
22 3re 8594 . . . . . . . . . . 11  |-  3  e.  RR
23 3pos 8614 . . . . . . . . . . 11  |-  0  <  3
2421, 22, 22, 23ltdiv1ii 8487 . . . . . . . . . 10  |-  ( 2  <  3  <->  ( 2  /  3 )  < 
( 3  /  3
) )
2520, 24mpbi 144 . . . . . . . . 9  |-  ( 2  /  3 )  < 
( 3  /  3
)
269, 10dividapi 8309 . . . . . . . . 9  |-  ( 3  /  3 )  =  1
2725, 26breqtri 3890 . . . . . . . 8  |-  ( 2  /  3 )  <  1
2821, 22, 10redivclapi 8343 . . . . . . . . 9  |-  ( 2  /  3 )  e.  RR
29 ltmul2 8414 . . . . . . . . 9  |-  ( ( ( 2  /  3
)  e.  RR  /\  1  e.  RR  /\  (
( A ^ 2 )  e.  RR  /\  0  <  ( A ^
2 ) ) )  ->  ( ( 2  /  3 )  <  1  <->  ( ( A ^ 2 )  x.  ( 2  /  3
) )  <  (
( A ^ 2 )  x.  1 ) ) )
3028, 2, 29mp3an12 1270 . . . . . . . 8  |-  ( ( ( A ^ 2 )  e.  RR  /\  0  <  ( A ^
2 ) )  -> 
( ( 2  / 
3 )  <  1  <->  ( ( A ^ 2 )  x.  ( 2  /  3 ) )  <  ( ( A ^ 2 )  x.  1 ) ) )
3127, 30mpbii 147 . . . . . . 7  |-  ( ( ( A ^ 2 )  e.  RR  /\  0  <  ( A ^
2 ) )  -> 
( ( A ^
2 )  x.  (
2  /  3 ) )  <  ( ( A ^ 2 )  x.  1 ) )
326, 19, 31syl2anc 404 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( 2  /  3 ) )  <  ( ( A ^ 2 )  x.  1 ) )
337mulid1d 7602 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  1 )  =  ( A ^
2 ) )
3432, 33breqtrd 3891 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( 2  /  3 ) )  <  ( A ^
2 ) )
3514, 34eqbrtrd 3887 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  <  ( A ^
2 ) )
36 0re 7585 . . . . . . . . 9  |-  0  e.  RR
37 ltle 7669 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
3836, 37mpan 416 . . . . . . . 8  |-  ( A  e.  RR  ->  (
0  <  A  ->  0  <_  A ) )
3938imdistani 435 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( A  e.  RR  /\  0  <_  A )
)
40 le2sq2 10161 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( 1  e.  RR  /\  A  <_  1 ) )  ->  ( A ^ 2 )  <_ 
( 1 ^ 2 ) )
412, 40mpanr1 429 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  A  <_  1 )  ->  ( A ^
2 )  <_  (
1 ^ 2 ) )
4239, 41stoic3 1372 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  1 )  ->  ( A ^ 2 )  <_ 
( 1 ^ 2 ) )
434, 42sylbi 120 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  <_ 
( 1 ^ 2 ) )
44 sq1 10179 . . . . 5  |-  ( 1 ^ 2 )  =  1
4543, 44syl6breq 3906 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  <_ 
1 )
46 redivclap 8295 . . . . . . . 8  |-  ( ( ( A ^ 2 )  e.  RR  /\  3  e.  RR  /\  3 #  0 )  ->  (
( A ^ 2 )  /  3 )  e.  RR )
4722, 10, 46mp3an23 1272 . . . . . . 7  |-  ( ( A ^ 2 )  e.  RR  ->  (
( A ^ 2 )  /  3 )  e.  RR )
486, 47syl 14 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  3 )  e.  RR )
49 remulcl 7567 . . . . . 6  |-  ( ( 2  e.  RR  /\  ( ( A ^
2 )  /  3
)  e.  RR )  ->  ( 2  x.  ( ( A ^
2 )  /  3
) )  e.  RR )
5021, 48, 49sylancr 406 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  e.  RR )
51 ltletr 7671 . . . . . 6  |-  ( ( ( 2  x.  (
( A ^ 2 )  /  3 ) )  e.  RR  /\  ( A ^ 2 )  e.  RR  /\  1  e.  RR )  ->  (
( ( 2  x.  ( ( A ^
2 )  /  3
) )  <  ( A ^ 2 )  /\  ( A ^ 2 )  <_  1 )  -> 
( 2  x.  (
( A ^ 2 )  /  3 ) )  <  1 ) )
522, 51mp3an3 1269 . . . . 5  |-  ( ( ( 2  x.  (
( A ^ 2 )  /  3 ) )  e.  RR  /\  ( A ^ 2 )  e.  RR )  -> 
( ( ( 2  x.  ( ( A ^ 2 )  / 
3 ) )  < 
( A ^ 2 )  /\  ( A ^ 2 )  <_ 
1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  <  1 ) )
5350, 6, 52syl2anc 404 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( 2  x.  ( ( A ^
2 )  /  3
) )  <  ( A ^ 2 )  /\  ( A ^ 2 )  <_  1 )  -> 
( 2  x.  (
( A ^ 2 )  /  3 ) )  <  1 ) )
5435, 45, 53mp2and 425 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  <  1 )
55 posdif 8030 . . . 4  |-  ( ( ( 2  x.  (
( A ^ 2 )  /  3 ) )  e.  RR  /\  1  e.  RR )  ->  ( ( 2  x.  ( ( A ^
2 )  /  3
) )  <  1  <->  0  <  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) ) ) )
5650, 2, 55sylancl 405 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 2  x.  (
( A ^ 2 )  /  3 ) )  <  1  <->  0  <  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) ) ) )
5754, 56mpbid 146 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) ) )
58 cos01bnd 11214 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  <  ( cos `  A )  /\  ( cos `  A )  < 
( 1  -  (
( A ^ 2 )  /  3 ) ) ) )
5958simpld 111 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( 2  x.  ( ( A ^ 2 )  / 
3 ) ) )  <  ( cos `  A
) )
60 resubcl 7843 . . . 4  |-  ( ( 1  e.  RR  /\  ( 2  x.  (
( A ^ 2 )  /  3 ) )  e.  RR )  ->  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) )  e.  RR )
612, 50, 60sylancr 406 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( 2  x.  ( ( A ^ 2 )  / 
3 ) ) )  e.  RR )
625recoscld 11180 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( cos `  A )  e.  RR )
63 lttr 7656 . . 3  |-  ( ( 0  e.  RR  /\  ( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  e.  RR  /\  ( cos `  A )  e.  RR )  -> 
( ( 0  < 
( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  /\  ( 1  -  ( 2  x.  ( ( A ^
2 )  /  3
) ) )  < 
( cos `  A
) )  ->  0  <  ( cos `  A
) ) )
6436, 61, 62, 63mp3an2i 1285 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 0  <  (
1  -  ( 2  x.  ( ( A ^ 2 )  / 
3 ) ) )  /\  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) )  <  ( cos `  A ) )  ->  0  <  ( cos `  A ) ) )
6557, 59, 64mp2and 425 1  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( cos `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 927    = wceq 1296    e. wcel 1445   class class class wbr 3867   ` cfv 5049  (class class class)co 5690   CCcc 7445   RRcr 7446   0cc0 7447   1c1 7448    x. cmul 7452   RR*cxr 7618    < clt 7619    <_ cle 7620    - cmin 7750   # cap 8155    / cdiv 8236   2c2 8571   3c3 8572   ZZcz 8848   (,]cioc 9455   ^cexp 10085   cosccos 11100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560  ax-arch 7561  ax-caucvg 7562
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-isom 5058  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-frec 6194  df-1o 6219  df-oadd 6223  df-er 6332  df-en 6538  df-dom 6539  df-fin 6540  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-3 8580  df-4 8581  df-5 8582  df-6 8583  df-7 8584  df-8 8585  df-n0 8772  df-z 8849  df-uz 9119  df-q 9204  df-rp 9234  df-ioc 9459  df-ico 9460  df-fz 9574  df-fzo 9703  df-iseq 10002  df-seq3 10003  df-exp 10086  df-fac 10265  df-ihash 10315  df-shft 10380  df-cj 10407  df-re 10408  df-im 10409  df-rsqrt 10562  df-abs 10563  df-clim 10838  df-sumdc 10913  df-ef 11103  df-cos 11106
This theorem is referenced by:  sin02gt0  11219  sincos1sgn  11220
  Copyright terms: Public domain W3C validator