| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cos01gt0 | Unicode version | ||
| Description: The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) | 
| Ref | Expression | 
|---|---|
| cos01gt0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0xr 8073 | 
. . . . . . . . . 10
 | |
| 2 | 1re 8025 | 
. . . . . . . . . 10
 | |
| 3 | elioc2 10011 | 
. . . . . . . . . 10
 | |
| 4 | 1, 2, 3 | mp2an 426 | 
. . . . . . . . 9
 | 
| 5 | 4 | simp1bi 1014 | 
. . . . . . . 8
 | 
| 6 | 5 | resqcld 10791 | 
. . . . . . 7
 | 
| 7 | 6 | recnd 8055 | 
. . . . . 6
 | 
| 8 | 2cn 9061 | 
. . . . . . 7
 | |
| 9 | 3cn 9065 | 
. . . . . . . 8
 | |
| 10 | 3ap0 9086 | 
. . . . . . . 8
 | |
| 11 | 9, 10 | pm3.2i 272 | 
. . . . . . 7
 | 
| 12 | div12ap 8721 | 
. . . . . . 7
 | |
| 13 | 8, 11, 12 | mp3an13 1339 | 
. . . . . 6
 | 
| 14 | 7, 13 | syl 14 | 
. . . . 5
 | 
| 15 | 2z 9354 | 
. . . . . . . . . 10
 | |
| 16 | expgt0 10664 | 
. . . . . . . . . 10
 | |
| 17 | 15, 16 | mp3an2 1336 | 
. . . . . . . . 9
 | 
| 18 | 17 | 3adant3 1019 | 
. . . . . . . 8
 | 
| 19 | 4, 18 | sylbi 121 | 
. . . . . . 7
 | 
| 20 | 2lt3 9161 | 
. . . . . . . . . 10
 | |
| 21 | 2re 9060 | 
. . . . . . . . . . 11
 | |
| 22 | 3re 9064 | 
. . . . . . . . . . 11
 | |
| 23 | 3pos 9084 | 
. . . . . . . . . . 11
 | |
| 24 | 21, 22, 22, 23 | ltdiv1ii 8956 | 
. . . . . . . . . 10
 | 
| 25 | 20, 24 | mpbi 145 | 
. . . . . . . . 9
 | 
| 26 | 9, 10 | dividapi 8772 | 
. . . . . . . . 9
 | 
| 27 | 25, 26 | breqtri 4058 | 
. . . . . . . 8
 | 
| 28 | 21, 22, 10 | redivclapi 8806 | 
. . . . . . . . 9
 | 
| 29 | ltmul2 8883 | 
. . . . . . . . 9
 | |
| 30 | 28, 2, 29 | mp3an12 1338 | 
. . . . . . . 8
 | 
| 31 | 27, 30 | mpbii 148 | 
. . . . . . 7
 | 
| 32 | 6, 19, 31 | syl2anc 411 | 
. . . . . 6
 | 
| 33 | 7 | mulridd 8043 | 
. . . . . 6
 | 
| 34 | 32, 33 | breqtrd 4059 | 
. . . . 5
 | 
| 35 | 14, 34 | eqbrtrd 4055 | 
. . . 4
 | 
| 36 | 0re 8026 | 
. . . . . . . . 9
 | |
| 37 | ltle 8114 | 
. . . . . . . . 9
 | |
| 38 | 36, 37 | mpan 424 | 
. . . . . . . 8
 | 
| 39 | 38 | imdistani 445 | 
. . . . . . 7
 | 
| 40 | le2sq2 10707 | 
. . . . . . . 8
 | |
| 41 | 2, 40 | mpanr1 437 | 
. . . . . . 7
 | 
| 42 | 39, 41 | stoic3 1442 | 
. . . . . 6
 | 
| 43 | 4, 42 | sylbi 121 | 
. . . . 5
 | 
| 44 | sq1 10725 | 
. . . . 5
 | |
| 45 | 43, 44 | breqtrdi 4074 | 
. . . 4
 | 
| 46 | redivclap 8758 | 
. . . . . . . 8
 | |
| 47 | 22, 10, 46 | mp3an23 1340 | 
. . . . . . 7
 | 
| 48 | 6, 47 | syl 14 | 
. . . . . 6
 | 
| 49 | remulcl 8007 | 
. . . . . 6
 | |
| 50 | 21, 48, 49 | sylancr 414 | 
. . . . 5
 | 
| 51 | ltletr 8116 | 
. . . . . 6
 | |
| 52 | 2, 51 | mp3an3 1337 | 
. . . . 5
 | 
| 53 | 50, 6, 52 | syl2anc 411 | 
. . . 4
 | 
| 54 | 35, 45, 53 | mp2and 433 | 
. . 3
 | 
| 55 | posdif 8482 | 
. . . 4
 | |
| 56 | 50, 2, 55 | sylancl 413 | 
. . 3
 | 
| 57 | 54, 56 | mpbid 147 | 
. 2
 | 
| 58 | cos01bnd 11923 | 
. . 3
 | |
| 59 | 58 | simpld 112 | 
. 2
 | 
| 60 | resubcl 8290 | 
. . . 4
 | |
| 61 | 2, 50, 60 | sylancr 414 | 
. . 3
 | 
| 62 | 5 | recoscld 11889 | 
. . 3
 | 
| 63 | lttr 8100 | 
. . 3
 | |
| 64 | 36, 61, 62, 63 | mp3an2i 1353 | 
. 2
 | 
| 65 | 57, 59, 64 | mp2and 433 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-ioc 9968 df-ico 9969 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-fac 10818 df-ihash 10868 df-shft 10980 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-ef 11813 df-cos 11816 | 
| This theorem is referenced by: sin02gt0 11929 sincos1sgn 11930 tangtx 15074 | 
| Copyright terms: Public domain | W3C validator |