ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos01gt0 Unicode version

Theorem cos01gt0 11469
Description: The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos01gt0  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( cos `  A
) )

Proof of Theorem cos01gt0
StepHypRef Expression
1 0xr 7812 . . . . . . . . . 10  |-  0  e.  RR*
2 1re 7765 . . . . . . . . . 10  |-  1  e.  RR
3 elioc2 9719 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
41, 2, 3mp2an 422 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
54simp1bi 996 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
65resqcld 10450 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  e.  RR )
76recnd 7794 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  e.  CC )
8 2cn 8791 . . . . . . 7  |-  2  e.  CC
9 3cn 8795 . . . . . . . 8  |-  3  e.  CC
10 3ap0 8816 . . . . . . . 8  |-  3 #  0
119, 10pm3.2i 270 . . . . . . 7  |-  ( 3  e.  CC  /\  3 #  0 )
12 div12ap 8454 . . . . . . 7  |-  ( ( 2  e.  CC  /\  ( A ^ 2 )  e.  CC  /\  (
3  e.  CC  /\  3 #  0 ) )  -> 
( 2  x.  (
( A ^ 2 )  /  3 ) )  =  ( ( A ^ 2 )  x.  ( 2  / 
3 ) ) )
138, 11, 12mp3an13 1306 . . . . . 6  |-  ( ( A ^ 2 )  e.  CC  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  =  ( ( A ^ 2 )  x.  ( 2  /  3
) ) )
147, 13syl 14 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  =  ( ( A ^ 2 )  x.  ( 2  /  3
) ) )
15 2z 9082 . . . . . . . . . 10  |-  2  e.  ZZ
16 expgt0 10326 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  2  e.  ZZ  /\  0  <  A )  ->  0  <  ( A ^ 2 ) )
1715, 16mp3an2 1303 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( A ^ 2 ) )
18173adant3 1001 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  1 )  ->  0  <  ( A ^ 2 ) )
194, 18sylbi 120 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( A ^ 2 ) )
20 2lt3 8890 . . . . . . . . . 10  |-  2  <  3
21 2re 8790 . . . . . . . . . . 11  |-  2  e.  RR
22 3re 8794 . . . . . . . . . . 11  |-  3  e.  RR
23 3pos 8814 . . . . . . . . . . 11  |-  0  <  3
2421, 22, 22, 23ltdiv1ii 8687 . . . . . . . . . 10  |-  ( 2  <  3  <->  ( 2  /  3 )  < 
( 3  /  3
) )
2520, 24mpbi 144 . . . . . . . . 9  |-  ( 2  /  3 )  < 
( 3  /  3
)
269, 10dividapi 8505 . . . . . . . . 9  |-  ( 3  /  3 )  =  1
2725, 26breqtri 3953 . . . . . . . 8  |-  ( 2  /  3 )  <  1
2821, 22, 10redivclapi 8539 . . . . . . . . 9  |-  ( 2  /  3 )  e.  RR
29 ltmul2 8614 . . . . . . . . 9  |-  ( ( ( 2  /  3
)  e.  RR  /\  1  e.  RR  /\  (
( A ^ 2 )  e.  RR  /\  0  <  ( A ^
2 ) ) )  ->  ( ( 2  /  3 )  <  1  <->  ( ( A ^ 2 )  x.  ( 2  /  3
) )  <  (
( A ^ 2 )  x.  1 ) ) )
3028, 2, 29mp3an12 1305 . . . . . . . 8  |-  ( ( ( A ^ 2 )  e.  RR  /\  0  <  ( A ^
2 ) )  -> 
( ( 2  / 
3 )  <  1  <->  ( ( A ^ 2 )  x.  ( 2  /  3 ) )  <  ( ( A ^ 2 )  x.  1 ) ) )
3127, 30mpbii 147 . . . . . . 7  |-  ( ( ( A ^ 2 )  e.  RR  /\  0  <  ( A ^
2 ) )  -> 
( ( A ^
2 )  x.  (
2  /  3 ) )  <  ( ( A ^ 2 )  x.  1 ) )
326, 19, 31syl2anc 408 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( 2  /  3 ) )  <  ( ( A ^ 2 )  x.  1 ) )
337mulid1d 7783 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  1 )  =  ( A ^
2 ) )
3432, 33breqtrd 3954 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( 2  /  3 ) )  <  ( A ^
2 ) )
3514, 34eqbrtrd 3950 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  <  ( A ^
2 ) )
36 0re 7766 . . . . . . . . 9  |-  0  e.  RR
37 ltle 7851 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
3836, 37mpan 420 . . . . . . . 8  |-  ( A  e.  RR  ->  (
0  <  A  ->  0  <_  A ) )
3938imdistani 441 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( A  e.  RR  /\  0  <_  A )
)
40 le2sq2 10368 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( 1  e.  RR  /\  A  <_  1 ) )  ->  ( A ^ 2 )  <_ 
( 1 ^ 2 ) )
412, 40mpanr1 433 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  A  <_  1 )  ->  ( A ^
2 )  <_  (
1 ^ 2 ) )
4239, 41stoic3 1407 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  1 )  ->  ( A ^ 2 )  <_ 
( 1 ^ 2 ) )
434, 42sylbi 120 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  <_ 
( 1 ^ 2 ) )
44 sq1 10386 . . . . 5  |-  ( 1 ^ 2 )  =  1
4543, 44breqtrdi 3969 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  <_ 
1 )
46 redivclap 8491 . . . . . . . 8  |-  ( ( ( A ^ 2 )  e.  RR  /\  3  e.  RR  /\  3 #  0 )  ->  (
( A ^ 2 )  /  3 )  e.  RR )
4722, 10, 46mp3an23 1307 . . . . . . 7  |-  ( ( A ^ 2 )  e.  RR  ->  (
( A ^ 2 )  /  3 )  e.  RR )
486, 47syl 14 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  3 )  e.  RR )
49 remulcl 7748 . . . . . 6  |-  ( ( 2  e.  RR  /\  ( ( A ^
2 )  /  3
)  e.  RR )  ->  ( 2  x.  ( ( A ^
2 )  /  3
) )  e.  RR )
5021, 48, 49sylancr 410 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  e.  RR )
51 ltletr 7853 . . . . . 6  |-  ( ( ( 2  x.  (
( A ^ 2 )  /  3 ) )  e.  RR  /\  ( A ^ 2 )  e.  RR  /\  1  e.  RR )  ->  (
( ( 2  x.  ( ( A ^
2 )  /  3
) )  <  ( A ^ 2 )  /\  ( A ^ 2 )  <_  1 )  -> 
( 2  x.  (
( A ^ 2 )  /  3 ) )  <  1 ) )
522, 51mp3an3 1304 . . . . 5  |-  ( ( ( 2  x.  (
( A ^ 2 )  /  3 ) )  e.  RR  /\  ( A ^ 2 )  e.  RR )  -> 
( ( ( 2  x.  ( ( A ^ 2 )  / 
3 ) )  < 
( A ^ 2 )  /\  ( A ^ 2 )  <_ 
1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  <  1 ) )
5350, 6, 52syl2anc 408 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( 2  x.  ( ( A ^
2 )  /  3
) )  <  ( A ^ 2 )  /\  ( A ^ 2 )  <_  1 )  -> 
( 2  x.  (
( A ^ 2 )  /  3 ) )  <  1 ) )
5435, 45, 53mp2and 429 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  <  1 )
55 posdif 8217 . . . 4  |-  ( ( ( 2  x.  (
( A ^ 2 )  /  3 ) )  e.  RR  /\  1  e.  RR )  ->  ( ( 2  x.  ( ( A ^
2 )  /  3
) )  <  1  <->  0  <  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) ) ) )
5650, 2, 55sylancl 409 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 2  x.  (
( A ^ 2 )  /  3 ) )  <  1  <->  0  <  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) ) ) )
5754, 56mpbid 146 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) ) )
58 cos01bnd 11465 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  <  ( cos `  A )  /\  ( cos `  A )  < 
( 1  -  (
( A ^ 2 )  /  3 ) ) ) )
5958simpld 111 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( 2  x.  ( ( A ^ 2 )  / 
3 ) ) )  <  ( cos `  A
) )
60 resubcl 8026 . . . 4  |-  ( ( 1  e.  RR  /\  ( 2  x.  (
( A ^ 2 )  /  3 ) )  e.  RR )  ->  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) )  e.  RR )
612, 50, 60sylancr 410 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( 2  x.  ( ( A ^ 2 )  / 
3 ) ) )  e.  RR )
625recoscld 11431 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( cos `  A )  e.  RR )
63 lttr 7838 . . 3  |-  ( ( 0  e.  RR  /\  ( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  e.  RR  /\  ( cos `  A )  e.  RR )  -> 
( ( 0  < 
( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  /\  ( 1  -  ( 2  x.  ( ( A ^
2 )  /  3
) ) )  < 
( cos `  A
) )  ->  0  <  ( cos `  A
) ) )
6436, 61, 62, 63mp3an2i 1320 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 0  <  (
1  -  ( 2  x.  ( ( A ^ 2 )  / 
3 ) ) )  /\  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) )  <  ( cos `  A ) )  ->  0  <  ( cos `  A ) ) )
6557, 59, 64mp2and 429 1  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( cos `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620   1c1 7621    x. cmul 7625   RR*cxr 7799    < clt 7800    <_ cle 7801    - cmin 7933   # cap 8343    / cdiv 8432   2c2 8771   3c3 8772   ZZcz 9054   (,]cioc 9672   ^cexp 10292   cosccos 11351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-5 8782  df-6 8783  df-7 8784  df-8 8785  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-ioc 9676  df-ico 9677  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-ihash 10522  df-shft 10587  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123  df-ef 11354  df-cos 11357
This theorem is referenced by:  sin02gt0  11470  sincos1sgn  11471  tangtx  12919
  Copyright terms: Public domain W3C validator