| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cos01gt0 | Unicode version | ||
| Description: The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) |
| Ref | Expression |
|---|---|
| cos01gt0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 8154 |
. . . . . . . . . 10
| |
| 2 | 1re 8106 |
. . . . . . . . . 10
| |
| 3 | elioc2 10093 |
. . . . . . . . . 10
| |
| 4 | 1, 2, 3 | mp2an 426 |
. . . . . . . . 9
|
| 5 | 4 | simp1bi 1015 |
. . . . . . . 8
|
| 6 | 5 | resqcld 10881 |
. . . . . . 7
|
| 7 | 6 | recnd 8136 |
. . . . . 6
|
| 8 | 2cn 9142 |
. . . . . . 7
| |
| 9 | 3cn 9146 |
. . . . . . . 8
| |
| 10 | 3ap0 9167 |
. . . . . . . 8
| |
| 11 | 9, 10 | pm3.2i 272 |
. . . . . . 7
|
| 12 | div12ap 8802 |
. . . . . . 7
| |
| 13 | 8, 11, 12 | mp3an13 1341 |
. . . . . 6
|
| 14 | 7, 13 | syl 14 |
. . . . 5
|
| 15 | 2z 9435 |
. . . . . . . . . 10
| |
| 16 | expgt0 10754 |
. . . . . . . . . 10
| |
| 17 | 15, 16 | mp3an2 1338 |
. . . . . . . . 9
|
| 18 | 17 | 3adant3 1020 |
. . . . . . . 8
|
| 19 | 4, 18 | sylbi 121 |
. . . . . . 7
|
| 20 | 2lt3 9242 |
. . . . . . . . . 10
| |
| 21 | 2re 9141 |
. . . . . . . . . . 11
| |
| 22 | 3re 9145 |
. . . . . . . . . . 11
| |
| 23 | 3pos 9165 |
. . . . . . . . . . 11
| |
| 24 | 21, 22, 22, 23 | ltdiv1ii 9037 |
. . . . . . . . . 10
|
| 25 | 20, 24 | mpbi 145 |
. . . . . . . . 9
|
| 26 | 9, 10 | dividapi 8853 |
. . . . . . . . 9
|
| 27 | 25, 26 | breqtri 4084 |
. . . . . . . 8
|
| 28 | 21, 22, 10 | redivclapi 8887 |
. . . . . . . . 9
|
| 29 | ltmul2 8964 |
. . . . . . . . 9
| |
| 30 | 28, 2, 29 | mp3an12 1340 |
. . . . . . . 8
|
| 31 | 27, 30 | mpbii 148 |
. . . . . . 7
|
| 32 | 6, 19, 31 | syl2anc 411 |
. . . . . 6
|
| 33 | 7 | mulridd 8124 |
. . . . . 6
|
| 34 | 32, 33 | breqtrd 4085 |
. . . . 5
|
| 35 | 14, 34 | eqbrtrd 4081 |
. . . 4
|
| 36 | 0re 8107 |
. . . . . . . . 9
| |
| 37 | ltle 8195 |
. . . . . . . . 9
| |
| 38 | 36, 37 | mpan 424 |
. . . . . . . 8
|
| 39 | 38 | imdistani 445 |
. . . . . . 7
|
| 40 | le2sq2 10797 |
. . . . . . . 8
| |
| 41 | 2, 40 | mpanr1 437 |
. . . . . . 7
|
| 42 | 39, 41 | stoic3 1451 |
. . . . . 6
|
| 43 | 4, 42 | sylbi 121 |
. . . . 5
|
| 44 | sq1 10815 |
. . . . 5
| |
| 45 | 43, 44 | breqtrdi 4100 |
. . . 4
|
| 46 | redivclap 8839 |
. . . . . . . 8
| |
| 47 | 22, 10, 46 | mp3an23 1342 |
. . . . . . 7
|
| 48 | 6, 47 | syl 14 |
. . . . . 6
|
| 49 | remulcl 8088 |
. . . . . 6
| |
| 50 | 21, 48, 49 | sylancr 414 |
. . . . 5
|
| 51 | ltletr 8197 |
. . . . . 6
| |
| 52 | 2, 51 | mp3an3 1339 |
. . . . 5
|
| 53 | 50, 6, 52 | syl2anc 411 |
. . . 4
|
| 54 | 35, 45, 53 | mp2and 433 |
. . 3
|
| 55 | posdif 8563 |
. . . 4
| |
| 56 | 50, 2, 55 | sylancl 413 |
. . 3
|
| 57 | 54, 56 | mpbid 147 |
. 2
|
| 58 | cos01bnd 12184 |
. . 3
| |
| 59 | 58 | simpld 112 |
. 2
|
| 60 | resubcl 8371 |
. . . 4
| |
| 61 | 2, 50, 60 | sylancr 414 |
. . 3
|
| 62 | 5 | recoscld 12150 |
. . 3
|
| 63 | lttr 8181 |
. . 3
| |
| 64 | 36, 61, 62, 63 | mp3an2i 1355 |
. 2
|
| 65 | 57, 59, 64 | mp2and 433 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-ioc 10050 df-ico 10051 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-fac 10908 df-ihash 10958 df-shft 11241 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 df-ef 12074 df-cos 12077 |
| This theorem is referenced by: sin02gt0 12190 sincos1sgn 12191 tangtx 15425 |
| Copyright terms: Public domain | W3C validator |