ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos01gt0 Unicode version

Theorem cos01gt0 11505
Description: The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos01gt0  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( cos `  A
) )

Proof of Theorem cos01gt0
StepHypRef Expression
1 0xr 7836 . . . . . . . . . 10  |-  0  e.  RR*
2 1re 7789 . . . . . . . . . 10  |-  1  e.  RR
3 elioc2 9749 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
41, 2, 3mp2an 423 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
54simp1bi 997 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
65resqcld 10481 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  e.  RR )
76recnd 7818 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  e.  CC )
8 2cn 8815 . . . . . . 7  |-  2  e.  CC
9 3cn 8819 . . . . . . . 8  |-  3  e.  CC
10 3ap0 8840 . . . . . . . 8  |-  3 #  0
119, 10pm3.2i 270 . . . . . . 7  |-  ( 3  e.  CC  /\  3 #  0 )
12 div12ap 8478 . . . . . . 7  |-  ( ( 2  e.  CC  /\  ( A ^ 2 )  e.  CC  /\  (
3  e.  CC  /\  3 #  0 ) )  -> 
( 2  x.  (
( A ^ 2 )  /  3 ) )  =  ( ( A ^ 2 )  x.  ( 2  / 
3 ) ) )
138, 11, 12mp3an13 1307 . . . . . 6  |-  ( ( A ^ 2 )  e.  CC  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  =  ( ( A ^ 2 )  x.  ( 2  /  3
) ) )
147, 13syl 14 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  =  ( ( A ^ 2 )  x.  ( 2  /  3
) ) )
15 2z 9106 . . . . . . . . . 10  |-  2  e.  ZZ
16 expgt0 10357 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  2  e.  ZZ  /\  0  <  A )  ->  0  <  ( A ^ 2 ) )
1715, 16mp3an2 1304 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( A ^ 2 ) )
18173adant3 1002 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  1 )  ->  0  <  ( A ^ 2 ) )
194, 18sylbi 120 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( A ^ 2 ) )
20 2lt3 8914 . . . . . . . . . 10  |-  2  <  3
21 2re 8814 . . . . . . . . . . 11  |-  2  e.  RR
22 3re 8818 . . . . . . . . . . 11  |-  3  e.  RR
23 3pos 8838 . . . . . . . . . . 11  |-  0  <  3
2421, 22, 22, 23ltdiv1ii 8711 . . . . . . . . . 10  |-  ( 2  <  3  <->  ( 2  /  3 )  < 
( 3  /  3
) )
2520, 24mpbi 144 . . . . . . . . 9  |-  ( 2  /  3 )  < 
( 3  /  3
)
269, 10dividapi 8529 . . . . . . . . 9  |-  ( 3  /  3 )  =  1
2725, 26breqtri 3961 . . . . . . . 8  |-  ( 2  /  3 )  <  1
2821, 22, 10redivclapi 8563 . . . . . . . . 9  |-  ( 2  /  3 )  e.  RR
29 ltmul2 8638 . . . . . . . . 9  |-  ( ( ( 2  /  3
)  e.  RR  /\  1  e.  RR  /\  (
( A ^ 2 )  e.  RR  /\  0  <  ( A ^
2 ) ) )  ->  ( ( 2  /  3 )  <  1  <->  ( ( A ^ 2 )  x.  ( 2  /  3
) )  <  (
( A ^ 2 )  x.  1 ) ) )
3028, 2, 29mp3an12 1306 . . . . . . . 8  |-  ( ( ( A ^ 2 )  e.  RR  /\  0  <  ( A ^
2 ) )  -> 
( ( 2  / 
3 )  <  1  <->  ( ( A ^ 2 )  x.  ( 2  /  3 ) )  <  ( ( A ^ 2 )  x.  1 ) ) )
3127, 30mpbii 147 . . . . . . 7  |-  ( ( ( A ^ 2 )  e.  RR  /\  0  <  ( A ^
2 ) )  -> 
( ( A ^
2 )  x.  (
2  /  3 ) )  <  ( ( A ^ 2 )  x.  1 ) )
326, 19, 31syl2anc 409 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( 2  /  3 ) )  <  ( ( A ^ 2 )  x.  1 ) )
337mulid1d 7807 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  1 )  =  ( A ^
2 ) )
3432, 33breqtrd 3962 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  x.  ( 2  /  3 ) )  <  ( A ^
2 ) )
3514, 34eqbrtrd 3958 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  <  ( A ^
2 ) )
36 0re 7790 . . . . . . . . 9  |-  0  e.  RR
37 ltle 7875 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
3836, 37mpan 421 . . . . . . . 8  |-  ( A  e.  RR  ->  (
0  <  A  ->  0  <_  A ) )
3938imdistani 442 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( A  e.  RR  /\  0  <_  A )
)
40 le2sq2 10399 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( 1  e.  RR  /\  A  <_  1 ) )  ->  ( A ^ 2 )  <_ 
( 1 ^ 2 ) )
412, 40mpanr1 434 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  A  <_  1 )  ->  ( A ^
2 )  <_  (
1 ^ 2 ) )
4239, 41stoic3 1408 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  1 )  ->  ( A ^ 2 )  <_ 
( 1 ^ 2 ) )
434, 42sylbi 120 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  <_ 
( 1 ^ 2 ) )
44 sq1 10417 . . . . 5  |-  ( 1 ^ 2 )  =  1
4543, 44breqtrdi 3977 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 2 )  <_ 
1 )
46 redivclap 8515 . . . . . . . 8  |-  ( ( ( A ^ 2 )  e.  RR  /\  3  e.  RR  /\  3 #  0 )  ->  (
( A ^ 2 )  /  3 )  e.  RR )
4722, 10, 46mp3an23 1308 . . . . . . 7  |-  ( ( A ^ 2 )  e.  RR  ->  (
( A ^ 2 )  /  3 )  e.  RR )
486, 47syl 14 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 2 )  /  3 )  e.  RR )
49 remulcl 7772 . . . . . 6  |-  ( ( 2  e.  RR  /\  ( ( A ^
2 )  /  3
)  e.  RR )  ->  ( 2  x.  ( ( A ^
2 )  /  3
) )  e.  RR )
5021, 48, 49sylancr 411 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  e.  RR )
51 ltletr 7877 . . . . . 6  |-  ( ( ( 2  x.  (
( A ^ 2 )  /  3 ) )  e.  RR  /\  ( A ^ 2 )  e.  RR  /\  1  e.  RR )  ->  (
( ( 2  x.  ( ( A ^
2 )  /  3
) )  <  ( A ^ 2 )  /\  ( A ^ 2 )  <_  1 )  -> 
( 2  x.  (
( A ^ 2 )  /  3 ) )  <  1 ) )
522, 51mp3an3 1305 . . . . 5  |-  ( ( ( 2  x.  (
( A ^ 2 )  /  3 ) )  e.  RR  /\  ( A ^ 2 )  e.  RR )  -> 
( ( ( 2  x.  ( ( A ^ 2 )  / 
3 ) )  < 
( A ^ 2 )  /\  ( A ^ 2 )  <_ 
1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  <  1 ) )
5350, 6, 52syl2anc 409 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( 2  x.  ( ( A ^
2 )  /  3
) )  <  ( A ^ 2 )  /\  ( A ^ 2 )  <_  1 )  -> 
( 2  x.  (
( A ^ 2 )  /  3 ) )  <  1 ) )
5435, 45, 53mp2and 430 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
2  x.  ( ( A ^ 2 )  /  3 ) )  <  1 )
55 posdif 8241 . . . 4  |-  ( ( ( 2  x.  (
( A ^ 2 )  /  3 ) )  e.  RR  /\  1  e.  RR )  ->  ( ( 2  x.  ( ( A ^
2 )  /  3
) )  <  1  <->  0  <  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) ) ) )
5650, 2, 55sylancl 410 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 2  x.  (
( A ^ 2 )  /  3 ) )  <  1  <->  0  <  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) ) ) )
5754, 56mpbid 146 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) ) )
58 cos01bnd 11501 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  <  ( cos `  A )  /\  ( cos `  A )  < 
( 1  -  (
( A ^ 2 )  /  3 ) ) ) )
5958simpld 111 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( 2  x.  ( ( A ^ 2 )  / 
3 ) ) )  <  ( cos `  A
) )
60 resubcl 8050 . . . 4  |-  ( ( 1  e.  RR  /\  ( 2  x.  (
( A ^ 2 )  /  3 ) )  e.  RR )  ->  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) )  e.  RR )
612, 50, 60sylancr 411 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
1  -  ( 2  x.  ( ( A ^ 2 )  / 
3 ) ) )  e.  RR )
625recoscld 11467 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( cos `  A )  e.  RR )
63 lttr 7862 . . 3  |-  ( ( 0  e.  RR  /\  ( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  e.  RR  /\  ( cos `  A )  e.  RR )  -> 
( ( 0  < 
( 1  -  (
2  x.  ( ( A ^ 2 )  /  3 ) ) )  /\  ( 1  -  ( 2  x.  ( ( A ^
2 )  /  3
) ) )  < 
( cos `  A
) )  ->  0  <  ( cos `  A
) ) )
6436, 61, 62, 63mp3an2i 1321 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 0  <  (
1  -  ( 2  x.  ( ( A ^ 2 )  / 
3 ) ) )  /\  ( 1  -  ( 2  x.  (
( A ^ 2 )  /  3 ) ) )  <  ( cos `  A ) )  ->  0  <  ( cos `  A ) ) )
6557, 59, 64mp2and 430 1  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( cos `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643   0cc0 7644   1c1 7645    x. cmul 7649   RR*cxr 7823    < clt 7824    <_ cle 7825    - cmin 7957   # cap 8367    / cdiv 8456   2c2 8795   3c3 8796   ZZcz 9078   (,]cioc 9702   ^cexp 10323   cosccos 11388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-7 8808  df-8 8809  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-ioc 9706  df-ico 9707  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-ihash 10554  df-shft 10619  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391  df-cos 11394
This theorem is referenced by:  sin02gt0  11506  sincos1sgn  11507  tangtx  12967
  Copyright terms: Public domain W3C validator