Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axcnre | Unicode version |
Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 7822. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axcnre |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-c 7717 | . 2 | |
2 | eqeq1 2161 | . . 3 | |
3 | 2 | 2rexbidv 2479 | . 2 |
4 | opelreal 7726 | . . . . . 6 | |
5 | opelreal 7726 | . . . . . 6 | |
6 | 4, 5 | anbi12i 456 | . . . . 5 |
7 | 6 | biimpri 132 | . . . 4 |
8 | df-i 7720 | . . . . . . . . 9 | |
9 | 8 | oveq1i 5824 | . . . . . . . 8 |
10 | 0r 7649 | . . . . . . . . . 10 | |
11 | 1sr 7650 | . . . . . . . . . . 11 | |
12 | mulcnsr 7734 | . . . . . . . . . . 11 | |
13 | 10, 11, 12 | mpanl12 433 | . . . . . . . . . 10 |
14 | 10, 13 | mpan2 422 | . . . . . . . . 9 |
15 | mulcomsrg 7656 | . . . . . . . . . . . . . 14 | |
16 | 10, 15 | mpan 421 | . . . . . . . . . . . . 13 |
17 | 00sr 7668 | . . . . . . . . . . . . 13 | |
18 | 16, 17 | eqtrd 2187 | . . . . . . . . . . . 12 |
19 | 18 | oveq1d 5829 | . . . . . . . . . . 11 |
20 | 00sr 7668 | . . . . . . . . . . . . . . . 16 | |
21 | 11, 20 | ax-mp 5 | . . . . . . . . . . . . . . 15 |
22 | 21 | oveq2i 5825 | . . . . . . . . . . . . . 14 |
23 | m1r 7651 | . . . . . . . . . . . . . . 15 | |
24 | 00sr 7668 | . . . . . . . . . . . . . . 15 | |
25 | 23, 24 | ax-mp 5 | . . . . . . . . . . . . . 14 |
26 | 22, 25 | eqtri 2175 | . . . . . . . . . . . . 13 |
27 | 26 | oveq2i 5825 | . . . . . . . . . . . 12 |
28 | 0idsr 7666 | . . . . . . . . . . . . 13 | |
29 | 10, 28 | ax-mp 5 | . . . . . . . . . . . 12 |
30 | 27, 29 | eqtri 2175 | . . . . . . . . . . 11 |
31 | 19, 30 | eqtrdi 2203 | . . . . . . . . . 10 |
32 | mulcomsrg 7656 | . . . . . . . . . . . . . 14 | |
33 | 11, 32 | mpan 421 | . . . . . . . . . . . . 13 |
34 | 1idsr 7667 | . . . . . . . . . . . . 13 | |
35 | 33, 34 | eqtrd 2187 | . . . . . . . . . . . 12 |
36 | 35 | oveq1d 5829 | . . . . . . . . . . 11 |
37 | 00sr 7668 | . . . . . . . . . . . . . 14 | |
38 | 10, 37 | ax-mp 5 | . . . . . . . . . . . . 13 |
39 | 38 | oveq2i 5825 | . . . . . . . . . . . 12 |
40 | 0idsr 7666 | . . . . . . . . . . . 12 | |
41 | 39, 40 | syl5eq 2199 | . . . . . . . . . . 11 |
42 | 36, 41 | eqtrd 2187 | . . . . . . . . . 10 |
43 | 31, 42 | opeq12d 3745 | . . . . . . . . 9 |
44 | 14, 43 | eqtrd 2187 | . . . . . . . 8 |
45 | 9, 44 | syl5eq 2199 | . . . . . . 7 |
46 | 45 | oveq2d 5830 | . . . . . 6 |
47 | 46 | adantl 275 | . . . . 5 |
48 | addcnsr 7733 | . . . . . . 7 | |
49 | 10, 48 | mpanl2 432 | . . . . . 6 |
50 | 10, 49 | mpanr1 434 | . . . . 5 |
51 | 0idsr 7666 | . . . . . 6 | |
52 | addcomsrg 7654 | . . . . . . . 8 | |
53 | 10, 52 | mpan 421 | . . . . . . 7 |
54 | 53, 40 | eqtrd 2187 | . . . . . 6 |
55 | opeq12 3739 | . . . . . 6 | |
56 | 51, 54, 55 | syl2an 287 | . . . . 5 |
57 | 47, 50, 56 | 3eqtrrd 2192 | . . . 4 |
58 | vex 2712 | . . . . . 6 | |
59 | opexg 4183 | . . . . . 6 | |
60 | 58, 10, 59 | mp2an 423 | . . . . 5 |
61 | vex 2712 | . . . . . 6 | |
62 | opexg 4183 | . . . . . 6 | |
63 | 61, 10, 62 | mp2an 423 | . . . . 5 |
64 | eleq1 2217 | . . . . . . 7 | |
65 | eleq1 2217 | . . . . . . 7 | |
66 | 64, 65 | bi2anan9 596 | . . . . . 6 |
67 | oveq1 5821 | . . . . . . . 8 | |
68 | oveq2 5822 | . . . . . . . . 9 | |
69 | 68 | oveq2d 5830 | . . . . . . . 8 |
70 | 67, 69 | sylan9eq 2207 | . . . . . . 7 |
71 | 70 | eqeq2d 2166 | . . . . . 6 |
72 | 66, 71 | anbi12d 465 | . . . . 5 |
73 | 60, 63, 72 | spc2ev 2805 | . . . 4 |
74 | 7, 57, 73 | syl2anc 409 | . . 3 |
75 | r2ex 2474 | . . 3 | |
76 | 74, 75 | sylibr 133 | . 2 |
77 | 1, 3, 76 | optocl 4655 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1332 wex 1469 wcel 2125 wrex 2433 cvv 2709 cop 3559 (class class class)co 5814 cnr 7196 c0r 7197 c1r 7198 cm1r 7199 cplr 7200 cmr 7201 cc 7709 cr 7710 ci 7713 caddc 7714 cmul 7716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-eprel 4244 df-id 4248 df-po 4251 df-iso 4252 df-iord 4321 df-on 4323 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-irdg 6307 df-1o 6353 df-2o 6354 df-oadd 6357 df-omul 6358 df-er 6469 df-ec 6471 df-qs 6475 df-ni 7203 df-pli 7204 df-mi 7205 df-lti 7206 df-plpq 7243 df-mpq 7244 df-enq 7246 df-nqqs 7247 df-plqqs 7248 df-mqqs 7249 df-1nqqs 7250 df-rq 7251 df-ltnqqs 7252 df-enq0 7323 df-nq0 7324 df-0nq0 7325 df-plq0 7326 df-mq0 7327 df-inp 7365 df-i1p 7366 df-iplp 7367 df-imp 7368 df-enr 7625 df-nr 7626 df-plr 7627 df-mr 7628 df-0r 7630 df-1r 7631 df-m1r 7632 df-c 7717 df-i 7720 df-r 7721 df-add 7722 df-mul 7723 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |