| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axcnre | Unicode version | ||
| Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 8071. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axcnre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 7966 |
. 2
| |
| 2 | eqeq1 2214 |
. . 3
| |
| 3 | 2 | 2rexbidv 2533 |
. 2
|
| 4 | opelreal 7975 |
. . . . . 6
| |
| 5 | opelreal 7975 |
. . . . . 6
| |
| 6 | 4, 5 | anbi12i 460 |
. . . . 5
|
| 7 | 6 | biimpri 133 |
. . . 4
|
| 8 | df-i 7969 |
. . . . . . . . 9
| |
| 9 | 8 | oveq1i 5977 |
. . . . . . . 8
|
| 10 | 0r 7898 |
. . . . . . . . . 10
| |
| 11 | 1sr 7899 |
. . . . . . . . . . 11
| |
| 12 | mulcnsr 7983 |
. . . . . . . . . . 11
| |
| 13 | 10, 11, 12 | mpanl12 436 |
. . . . . . . . . 10
|
| 14 | 10, 13 | mpan2 425 |
. . . . . . . . 9
|
| 15 | mulcomsrg 7905 |
. . . . . . . . . . . . . 14
| |
| 16 | 10, 15 | mpan 424 |
. . . . . . . . . . . . 13
|
| 17 | 00sr 7917 |
. . . . . . . . . . . . 13
| |
| 18 | 16, 17 | eqtrd 2240 |
. . . . . . . . . . . 12
|
| 19 | 18 | oveq1d 5982 |
. . . . . . . . . . 11
|
| 20 | 00sr 7917 |
. . . . . . . . . . . . . . . 16
| |
| 21 | 11, 20 | ax-mp 5 |
. . . . . . . . . . . . . . 15
|
| 22 | 21 | oveq2i 5978 |
. . . . . . . . . . . . . 14
|
| 23 | m1r 7900 |
. . . . . . . . . . . . . . 15
| |
| 24 | 00sr 7917 |
. . . . . . . . . . . . . . 15
| |
| 25 | 23, 24 | ax-mp 5 |
. . . . . . . . . . . . . 14
|
| 26 | 22, 25 | eqtri 2228 |
. . . . . . . . . . . . 13
|
| 27 | 26 | oveq2i 5978 |
. . . . . . . . . . . 12
|
| 28 | 0idsr 7915 |
. . . . . . . . . . . . 13
| |
| 29 | 10, 28 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 30 | 27, 29 | eqtri 2228 |
. . . . . . . . . . 11
|
| 31 | 19, 30 | eqtrdi 2256 |
. . . . . . . . . 10
|
| 32 | mulcomsrg 7905 |
. . . . . . . . . . . . . 14
| |
| 33 | 11, 32 | mpan 424 |
. . . . . . . . . . . . 13
|
| 34 | 1idsr 7916 |
. . . . . . . . . . . . 13
| |
| 35 | 33, 34 | eqtrd 2240 |
. . . . . . . . . . . 12
|
| 36 | 35 | oveq1d 5982 |
. . . . . . . . . . 11
|
| 37 | 00sr 7917 |
. . . . . . . . . . . . . 14
| |
| 38 | 10, 37 | ax-mp 5 |
. . . . . . . . . . . . 13
|
| 39 | 38 | oveq2i 5978 |
. . . . . . . . . . . 12
|
| 40 | 0idsr 7915 |
. . . . . . . . . . . 12
| |
| 41 | 39, 40 | eqtrid 2252 |
. . . . . . . . . . 11
|
| 42 | 36, 41 | eqtrd 2240 |
. . . . . . . . . 10
|
| 43 | 31, 42 | opeq12d 3841 |
. . . . . . . . 9
|
| 44 | 14, 43 | eqtrd 2240 |
. . . . . . . 8
|
| 45 | 9, 44 | eqtrid 2252 |
. . . . . . 7
|
| 46 | 45 | oveq2d 5983 |
. . . . . 6
|
| 47 | 46 | adantl 277 |
. . . . 5
|
| 48 | addcnsr 7982 |
. . . . . . 7
| |
| 49 | 10, 48 | mpanl2 435 |
. . . . . 6
|
| 50 | 10, 49 | mpanr1 437 |
. . . . 5
|
| 51 | 0idsr 7915 |
. . . . . 6
| |
| 52 | addcomsrg 7903 |
. . . . . . . 8
| |
| 53 | 10, 52 | mpan 424 |
. . . . . . 7
|
| 54 | 53, 40 | eqtrd 2240 |
. . . . . 6
|
| 55 | opeq12 3835 |
. . . . . 6
| |
| 56 | 51, 54, 55 | syl2an 289 |
. . . . 5
|
| 57 | 47, 50, 56 | 3eqtrrd 2245 |
. . . 4
|
| 58 | vex 2779 |
. . . . . 6
| |
| 59 | opexg 4290 |
. . . . . 6
| |
| 60 | 58, 10, 59 | mp2an 426 |
. . . . 5
|
| 61 | vex 2779 |
. . . . . 6
| |
| 62 | opexg 4290 |
. . . . . 6
| |
| 63 | 61, 10, 62 | mp2an 426 |
. . . . 5
|
| 64 | eleq1 2270 |
. . . . . . 7
| |
| 65 | eleq1 2270 |
. . . . . . 7
| |
| 66 | 64, 65 | bi2anan9 606 |
. . . . . 6
|
| 67 | oveq1 5974 |
. . . . . . . 8
| |
| 68 | oveq2 5975 |
. . . . . . . . 9
| |
| 69 | 68 | oveq2d 5983 |
. . . . . . . 8
|
| 70 | 67, 69 | sylan9eq 2260 |
. . . . . . 7
|
| 71 | 70 | eqeq2d 2219 |
. . . . . 6
|
| 72 | 66, 71 | anbi12d 473 |
. . . . 5
|
| 73 | 60, 63, 72 | spc2ev 2876 |
. . . 4
|
| 74 | 7, 57, 73 | syl2anc 411 |
. . 3
|
| 75 | r2ex 2528 |
. . 3
| |
| 76 | 74, 75 | sylibr 134 |
. 2
|
| 77 | 1, 3, 76 | optocl 4769 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-2o 6526 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-enq0 7572 df-nq0 7573 df-0nq0 7574 df-plq0 7575 df-mq0 7576 df-inp 7614 df-i1p 7615 df-iplp 7616 df-imp 7617 df-enr 7874 df-nr 7875 df-plr 7876 df-mr 7877 df-0r 7879 df-1r 7880 df-m1r 7881 df-c 7966 df-i 7969 df-r 7970 df-add 7971 df-mul 7972 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |