ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcnre Unicode version

Theorem axcnre 7780
Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 7822. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axcnre  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Distinct variable group:    x, y, A

Proof of Theorem axcnre
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-c 7717 . 2  |-  CC  =  ( R.  X.  R. )
2 eqeq1 2161 . . 3  |-  ( <.
z ,  w >.  =  A  ->  ( <. z ,  w >.  =  ( x  +  ( _i  x.  y ) )  <-> 
A  =  ( x  +  ( _i  x.  y ) ) ) )
322rexbidv 2479 . 2  |-  ( <.
z ,  w >.  =  A  ->  ( E. x  e.  RR  E. y  e.  RR  <. z ,  w >.  =  ( x  +  ( _i  x.  y
) )  <->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) ) )
4 opelreal 7726 . . . . . 6  |-  ( <.
z ,  0R >.  e.  RR  <->  z  e.  R. )
5 opelreal 7726 . . . . . 6  |-  ( <.
w ,  0R >.  e.  RR  <->  w  e.  R. )
64, 5anbi12i 456 . . . . 5  |-  ( (
<. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR ) 
<->  ( z  e.  R.  /\  w  e.  R. )
)
76biimpri 132 . . . 4  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  ( <. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR ) )
8 df-i 7720 . . . . . . . . 9  |-  _i  =  <. 0R ,  1R >.
98oveq1i 5824 . . . . . . . 8  |-  ( _i  x.  <. w ,  0R >. )  =  ( <. 0R ,  1R >.  x.  <. w ,  0R >. )
10 0r 7649 . . . . . . . . . 10  |-  0R  e.  R.
11 1sr 7650 . . . . . . . . . . 11  |-  1R  e.  R.
12 mulcnsr 7734 . . . . . . . . . . 11  |-  ( ( ( 0R  e.  R.  /\ 
1R  e.  R. )  /\  ( w  e.  R.  /\  0R  e.  R. )
)  ->  ( <. 0R ,  1R >.  x.  <. w ,  0R >. )  =  <. ( ( 0R 
.R  w )  +R  ( -1R  .R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) ) >. )
1310, 11, 12mpanl12 433 . . . . . . . . . 10  |-  ( ( w  e.  R.  /\  0R  e.  R. )  -> 
( <. 0R ,  1R >.  x.  <. w ,  0R >. )  =  <. (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) )
>. )
1410, 13mpan2 422 . . . . . . . . 9  |-  ( w  e.  R.  ->  ( <. 0R ,  1R >.  x. 
<. w ,  0R >. )  =  <. ( ( 0R 
.R  w )  +R  ( -1R  .R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) ) >. )
15 mulcomsrg 7656 . . . . . . . . . . . . . 14  |-  ( ( 0R  e.  R.  /\  w  e.  R. )  ->  ( 0R  .R  w
)  =  ( w  .R  0R ) )
1610, 15mpan 421 . . . . . . . . . . . . 13  |-  ( w  e.  R.  ->  ( 0R  .R  w )  =  ( w  .R  0R ) )
17 00sr 7668 . . . . . . . . . . . . 13  |-  ( w  e.  R.  ->  (
w  .R  0R )  =  0R )
1816, 17eqtrd 2187 . . . . . . . . . . . 12  |-  ( w  e.  R.  ->  ( 0R  .R  w )  =  0R )
1918oveq1d 5829 . . . . . . . . . . 11  |-  ( w  e.  R.  ->  (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) )  =  ( 0R  +R  ( -1R  .R  ( 1R  .R  0R ) ) ) )
20 00sr 7668 . . . . . . . . . . . . . . . 16  |-  ( 1R  e.  R.  ->  ( 1R  .R  0R )  =  0R )
2111, 20ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 1R 
.R  0R )  =  0R
2221oveq2i 5825 . . . . . . . . . . . . . 14  |-  ( -1R 
.R  ( 1R  .R  0R ) )  =  ( -1R  .R  0R )
23 m1r 7651 . . . . . . . . . . . . . . 15  |-  -1R  e.  R.
24 00sr 7668 . . . . . . . . . . . . . . 15  |-  ( -1R 
e.  R.  ->  ( -1R 
.R  0R )  =  0R )
2523, 24ax-mp 5 . . . . . . . . . . . . . 14  |-  ( -1R 
.R  0R )  =  0R
2622, 25eqtri 2175 . . . . . . . . . . . . 13  |-  ( -1R 
.R  ( 1R  .R  0R ) )  =  0R
2726oveq2i 5825 . . . . . . . . . . . 12  |-  ( 0R 
+R  ( -1R  .R  ( 1R  .R  0R ) ) )  =  ( 0R  +R  0R )
28 0idsr 7666 . . . . . . . . . . . . 13  |-  ( 0R  e.  R.  ->  ( 0R  +R  0R )  =  0R )
2910, 28ax-mp 5 . . . . . . . . . . . 12  |-  ( 0R 
+R  0R )  =  0R
3027, 29eqtri 2175 . . . . . . . . . . 11  |-  ( 0R 
+R  ( -1R  .R  ( 1R  .R  0R ) ) )  =  0R
3119, 30eqtrdi 2203 . . . . . . . . . 10  |-  ( w  e.  R.  ->  (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) )  =  0R )
32 mulcomsrg 7656 . . . . . . . . . . . . . 14  |-  ( ( 1R  e.  R.  /\  w  e.  R. )  ->  ( 1R  .R  w
)  =  ( w  .R  1R ) )
3311, 32mpan 421 . . . . . . . . . . . . 13  |-  ( w  e.  R.  ->  ( 1R  .R  w )  =  ( w  .R  1R ) )
34 1idsr 7667 . . . . . . . . . . . . 13  |-  ( w  e.  R.  ->  (
w  .R  1R )  =  w )
3533, 34eqtrd 2187 . . . . . . . . . . . 12  |-  ( w  e.  R.  ->  ( 1R  .R  w )  =  w )
3635oveq1d 5829 . . . . . . . . . . 11  |-  ( w  e.  R.  ->  (
( 1R  .R  w
)  +R  ( 0R 
.R  0R ) )  =  ( w  +R  ( 0R  .R  0R ) ) )
37 00sr 7668 . . . . . . . . . . . . . 14  |-  ( 0R  e.  R.  ->  ( 0R  .R  0R )  =  0R )
3810, 37ax-mp 5 . . . . . . . . . . . . 13  |-  ( 0R 
.R  0R )  =  0R
3938oveq2i 5825 . . . . . . . . . . . 12  |-  ( w  +R  ( 0R  .R  0R ) )  =  ( w  +R  0R )
40 0idsr 7666 . . . . . . . . . . . 12  |-  ( w  e.  R.  ->  (
w  +R  0R )  =  w )
4139, 40syl5eq 2199 . . . . . . . . . . 11  |-  ( w  e.  R.  ->  (
w  +R  ( 0R 
.R  0R ) )  =  w )
4236, 41eqtrd 2187 . . . . . . . . . 10  |-  ( w  e.  R.  ->  (
( 1R  .R  w
)  +R  ( 0R 
.R  0R ) )  =  w )
4331, 42opeq12d 3745 . . . . . . . . 9  |-  ( w  e.  R.  ->  <. (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) )
>.  =  <. 0R ,  w >. )
4414, 43eqtrd 2187 . . . . . . . 8  |-  ( w  e.  R.  ->  ( <. 0R ,  1R >.  x. 
<. w ,  0R >. )  =  <. 0R ,  w >. )
459, 44syl5eq 2199 . . . . . . 7  |-  ( w  e.  R.  ->  (
_i  x.  <. w ,  0R >. )  =  <. 0R ,  w >. )
4645oveq2d 5830 . . . . . 6  |-  ( w  e.  R.  ->  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. )
)  =  ( <.
z ,  0R >.  + 
<. 0R ,  w >. ) )
4746adantl 275 . . . . 5  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) )  =  ( <.
z ,  0R >.  + 
<. 0R ,  w >. ) )
48 addcnsr 7733 . . . . . . 7  |-  ( ( ( z  e.  R.  /\  0R  e.  R. )  /\  ( 0R  e.  R.  /\  w  e.  R. )
)  ->  ( <. z ,  0R >.  +  <. 0R ,  w >. )  =  <. ( z  +R  0R ) ,  ( 0R  +R  w )
>. )
4910, 48mpanl2 432 . . . . . 6  |-  ( ( z  e.  R.  /\  ( 0R  e.  R.  /\  w  e.  R. )
)  ->  ( <. z ,  0R >.  +  <. 0R ,  w >. )  =  <. ( z  +R  0R ) ,  ( 0R  +R  w )
>. )
5010, 49mpanr1 434 . . . . 5  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  ( <. z ,  0R >.  +  <. 0R ,  w >. )  =  <. (
z  +R  0R ) ,  ( 0R  +R  w ) >. )
51 0idsr 7666 . . . . . 6  |-  ( z  e.  R.  ->  (
z  +R  0R )  =  z )
52 addcomsrg 7654 . . . . . . . 8  |-  ( ( 0R  e.  R.  /\  w  e.  R. )  ->  ( 0R  +R  w
)  =  ( w  +R  0R ) )
5310, 52mpan 421 . . . . . . 7  |-  ( w  e.  R.  ->  ( 0R  +R  w )  =  ( w  +R  0R ) )
5453, 40eqtrd 2187 . . . . . 6  |-  ( w  e.  R.  ->  ( 0R  +R  w )  =  w )
55 opeq12 3739 . . . . . 6  |-  ( ( ( z  +R  0R )  =  z  /\  ( 0R  +R  w
)  =  w )  ->  <. ( z  +R  0R ) ,  ( 0R  +R  w )
>.  =  <. z ,  w >. )
5651, 54, 55syl2an 287 . . . . 5  |-  ( ( z  e.  R.  /\  w  e.  R. )  -> 
<. ( z  +R  0R ) ,  ( 0R  +R  w ) >.  =  <. z ,  w >. )
5747, 50, 563eqtrrd 2192 . . . 4  |-  ( ( z  e.  R.  /\  w  e.  R. )  -> 
<. z ,  w >.  =  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) ) )
58 vex 2712 . . . . . 6  |-  z  e. 
_V
59 opexg 4183 . . . . . 6  |-  ( ( z  e.  _V  /\  0R  e.  R. )  ->  <. z ,  0R >.  e. 
_V )
6058, 10, 59mp2an 423 . . . . 5  |-  <. z ,  0R >.  e.  _V
61 vex 2712 . . . . . 6  |-  w  e. 
_V
62 opexg 4183 . . . . . 6  |-  ( ( w  e.  _V  /\  0R  e.  R. )  ->  <. w ,  0R >.  e. 
_V )
6361, 10, 62mp2an 423 . . . . 5  |-  <. w ,  0R >.  e.  _V
64 eleq1 2217 . . . . . . 7  |-  ( x  =  <. z ,  0R >.  ->  ( x  e.  RR  <->  <. z ,  0R >.  e.  RR ) )
65 eleq1 2217 . . . . . . 7  |-  ( y  =  <. w ,  0R >.  ->  ( y  e.  RR  <->  <. w ,  0R >.  e.  RR ) )
6664, 65bi2anan9 596 . . . . . 6  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( (
x  e.  RR  /\  y  e.  RR )  <->  (
<. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR ) ) )
67 oveq1 5821 . . . . . . . 8  |-  ( x  =  <. z ,  0R >.  ->  ( x  +  ( _i  x.  y
) )  =  (
<. z ,  0R >.  +  ( _i  x.  y
) ) )
68 oveq2 5822 . . . . . . . . 9  |-  ( y  =  <. w ,  0R >.  ->  ( _i  x.  y )  =  ( _i  x.  <. w ,  0R >. ) )
6968oveq2d 5830 . . . . . . . 8  |-  ( y  =  <. w ,  0R >.  ->  ( <. z ,  0R >.  +  (
_i  x.  y )
)  =  ( <.
z ,  0R >.  +  ( _i  x.  <. w ,  0R >. )
) )
7067, 69sylan9eq 2207 . . . . . . 7  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( x  +  ( _i  x.  y ) )  =  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) ) )
7170eqeq2d 2166 . . . . . 6  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( <. z ,  w >.  =  ( x  +  ( _i  x.  y ) )  <->  <. z ,  w >.  =  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) ) ) )
7266, 71anbi12d 465 . . . . 5  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( (
( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y
) ) )  <->  ( ( <. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR )  /\  <. z ,  w >.  =  ( <. z ,  0R >.  +  (
_i  x.  <. w ,  0R >. ) ) ) ) )
7360, 63, 72spc2ev 2805 . . . 4  |-  ( ( ( <. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR )  /\  <. z ,  w >.  =  ( <. z ,  0R >.  +  (
_i  x.  <. w ,  0R >. ) ) )  ->  E. x E. y
( ( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y ) ) ) )
747, 57, 73syl2anc 409 . . 3  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  E. x E. y
( ( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y ) ) ) )
75 r2ex 2474 . . 3  |-  ( E. x  e.  RR  E. y  e.  RR  <. z ,  w >.  =  (
x  +  ( _i  x.  y ) )  <->  E. x E. y ( ( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y
) ) ) )
7674, 75sylibr 133 . 2  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  E. x  e.  RR  E. y  e.  RR  <. z ,  w >.  =  ( x  +  ( _i  x.  y ) ) )
771, 3, 76optocl 4655 1  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332   E.wex 1469    e. wcel 2125   E.wrex 2433   _Vcvv 2709   <.cop 3559  (class class class)co 5814   R.cnr 7196   0Rc0r 7197   1Rc1r 7198   -1Rcm1r 7199    +R cplr 7200    .R cmr 7201   CCcc 7709   RRcr 7710   _ici 7713    + caddc 7714    x. cmul 7716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-eprel 4244  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-1o 6353  df-2o 6354  df-oadd 6357  df-omul 6358  df-er 6469  df-ec 6471  df-qs 6475  df-ni 7203  df-pli 7204  df-mi 7205  df-lti 7206  df-plpq 7243  df-mpq 7244  df-enq 7246  df-nqqs 7247  df-plqqs 7248  df-mqqs 7249  df-1nqqs 7250  df-rq 7251  df-ltnqqs 7252  df-enq0 7323  df-nq0 7324  df-0nq0 7325  df-plq0 7326  df-mq0 7327  df-inp 7365  df-i1p 7366  df-iplp 7367  df-imp 7368  df-enr 7625  df-nr 7626  df-plr 7627  df-mr 7628  df-0r 7630  df-1r 7631  df-m1r 7632  df-c 7717  df-i 7720  df-r 7721  df-add 7722  df-mul 7723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator