Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axcnre | Unicode version |
Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 7885. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axcnre |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-c 7780 | . 2 | |
2 | eqeq1 2177 | . . 3 | |
3 | 2 | 2rexbidv 2495 | . 2 |
4 | opelreal 7789 | . . . . . 6 | |
5 | opelreal 7789 | . . . . . 6 | |
6 | 4, 5 | anbi12i 457 | . . . . 5 |
7 | 6 | biimpri 132 | . . . 4 |
8 | df-i 7783 | . . . . . . . . 9 | |
9 | 8 | oveq1i 5863 | . . . . . . . 8 |
10 | 0r 7712 | . . . . . . . . . 10 | |
11 | 1sr 7713 | . . . . . . . . . . 11 | |
12 | mulcnsr 7797 | . . . . . . . . . . 11 | |
13 | 10, 11, 12 | mpanl12 434 | . . . . . . . . . 10 |
14 | 10, 13 | mpan2 423 | . . . . . . . . 9 |
15 | mulcomsrg 7719 | . . . . . . . . . . . . . 14 | |
16 | 10, 15 | mpan 422 | . . . . . . . . . . . . 13 |
17 | 00sr 7731 | . . . . . . . . . . . . 13 | |
18 | 16, 17 | eqtrd 2203 | . . . . . . . . . . . 12 |
19 | 18 | oveq1d 5868 | . . . . . . . . . . 11 |
20 | 00sr 7731 | . . . . . . . . . . . . . . . 16 | |
21 | 11, 20 | ax-mp 5 | . . . . . . . . . . . . . . 15 |
22 | 21 | oveq2i 5864 | . . . . . . . . . . . . . 14 |
23 | m1r 7714 | . . . . . . . . . . . . . . 15 | |
24 | 00sr 7731 | . . . . . . . . . . . . . . 15 | |
25 | 23, 24 | ax-mp 5 | . . . . . . . . . . . . . 14 |
26 | 22, 25 | eqtri 2191 | . . . . . . . . . . . . 13 |
27 | 26 | oveq2i 5864 | . . . . . . . . . . . 12 |
28 | 0idsr 7729 | . . . . . . . . . . . . 13 | |
29 | 10, 28 | ax-mp 5 | . . . . . . . . . . . 12 |
30 | 27, 29 | eqtri 2191 | . . . . . . . . . . 11 |
31 | 19, 30 | eqtrdi 2219 | . . . . . . . . . 10 |
32 | mulcomsrg 7719 | . . . . . . . . . . . . . 14 | |
33 | 11, 32 | mpan 422 | . . . . . . . . . . . . 13 |
34 | 1idsr 7730 | . . . . . . . . . . . . 13 | |
35 | 33, 34 | eqtrd 2203 | . . . . . . . . . . . 12 |
36 | 35 | oveq1d 5868 | . . . . . . . . . . 11 |
37 | 00sr 7731 | . . . . . . . . . . . . . 14 | |
38 | 10, 37 | ax-mp 5 | . . . . . . . . . . . . 13 |
39 | 38 | oveq2i 5864 | . . . . . . . . . . . 12 |
40 | 0idsr 7729 | . . . . . . . . . . . 12 | |
41 | 39, 40 | eqtrid 2215 | . . . . . . . . . . 11 |
42 | 36, 41 | eqtrd 2203 | . . . . . . . . . 10 |
43 | 31, 42 | opeq12d 3773 | . . . . . . . . 9 |
44 | 14, 43 | eqtrd 2203 | . . . . . . . 8 |
45 | 9, 44 | eqtrid 2215 | . . . . . . 7 |
46 | 45 | oveq2d 5869 | . . . . . 6 |
47 | 46 | adantl 275 | . . . . 5 |
48 | addcnsr 7796 | . . . . . . 7 | |
49 | 10, 48 | mpanl2 433 | . . . . . 6 |
50 | 10, 49 | mpanr1 435 | . . . . 5 |
51 | 0idsr 7729 | . . . . . 6 | |
52 | addcomsrg 7717 | . . . . . . . 8 | |
53 | 10, 52 | mpan 422 | . . . . . . 7 |
54 | 53, 40 | eqtrd 2203 | . . . . . 6 |
55 | opeq12 3767 | . . . . . 6 | |
56 | 51, 54, 55 | syl2an 287 | . . . . 5 |
57 | 47, 50, 56 | 3eqtrrd 2208 | . . . 4 |
58 | vex 2733 | . . . . . 6 | |
59 | opexg 4213 | . . . . . 6 | |
60 | 58, 10, 59 | mp2an 424 | . . . . 5 |
61 | vex 2733 | . . . . . 6 | |
62 | opexg 4213 | . . . . . 6 | |
63 | 61, 10, 62 | mp2an 424 | . . . . 5 |
64 | eleq1 2233 | . . . . . . 7 | |
65 | eleq1 2233 | . . . . . . 7 | |
66 | 64, 65 | bi2anan9 601 | . . . . . 6 |
67 | oveq1 5860 | . . . . . . . 8 | |
68 | oveq2 5861 | . . . . . . . . 9 | |
69 | 68 | oveq2d 5869 | . . . . . . . 8 |
70 | 67, 69 | sylan9eq 2223 | . . . . . . 7 |
71 | 70 | eqeq2d 2182 | . . . . . 6 |
72 | 66, 71 | anbi12d 470 | . . . . 5 |
73 | 60, 63, 72 | spc2ev 2826 | . . . 4 |
74 | 7, 57, 73 | syl2anc 409 | . . 3 |
75 | r2ex 2490 | . . 3 | |
76 | 74, 75 | sylibr 133 | . 2 |
77 | 1, 3, 76 | optocl 4687 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wex 1485 wcel 2141 wrex 2449 cvv 2730 cop 3586 (class class class)co 5853 cnr 7259 c0r 7260 c1r 7261 cm1r 7262 cplr 7263 cmr 7264 cc 7772 cr 7773 ci 7776 caddc 7777 cmul 7779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-i1p 7429 df-iplp 7430 df-imp 7431 df-enr 7688 df-nr 7689 df-plr 7690 df-mr 7691 df-0r 7693 df-1r 7694 df-m1r 7695 df-c 7780 df-i 7783 df-r 7784 df-add 7785 df-mul 7786 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |