ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcnre Unicode version

Theorem axcnre 7882
Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 7924. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axcnre  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Distinct variable group:    x, y, A

Proof of Theorem axcnre
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-c 7819 . 2  |-  CC  =  ( R.  X.  R. )
2 eqeq1 2184 . . 3  |-  ( <.
z ,  w >.  =  A  ->  ( <. z ,  w >.  =  ( x  +  ( _i  x.  y ) )  <-> 
A  =  ( x  +  ( _i  x.  y ) ) ) )
322rexbidv 2502 . 2  |-  ( <.
z ,  w >.  =  A  ->  ( E. x  e.  RR  E. y  e.  RR  <. z ,  w >.  =  ( x  +  ( _i  x.  y
) )  <->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) ) )
4 opelreal 7828 . . . . . 6  |-  ( <.
z ,  0R >.  e.  RR  <->  z  e.  R. )
5 opelreal 7828 . . . . . 6  |-  ( <.
w ,  0R >.  e.  RR  <->  w  e.  R. )
64, 5anbi12i 460 . . . . 5  |-  ( (
<. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR ) 
<->  ( z  e.  R.  /\  w  e.  R. )
)
76biimpri 133 . . . 4  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  ( <. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR ) )
8 df-i 7822 . . . . . . . . 9  |-  _i  =  <. 0R ,  1R >.
98oveq1i 5887 . . . . . . . 8  |-  ( _i  x.  <. w ,  0R >. )  =  ( <. 0R ,  1R >.  x.  <. w ,  0R >. )
10 0r 7751 . . . . . . . . . 10  |-  0R  e.  R.
11 1sr 7752 . . . . . . . . . . 11  |-  1R  e.  R.
12 mulcnsr 7836 . . . . . . . . . . 11  |-  ( ( ( 0R  e.  R.  /\ 
1R  e.  R. )  /\  ( w  e.  R.  /\  0R  e.  R. )
)  ->  ( <. 0R ,  1R >.  x.  <. w ,  0R >. )  =  <. ( ( 0R 
.R  w )  +R  ( -1R  .R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) ) >. )
1310, 11, 12mpanl12 436 . . . . . . . . . 10  |-  ( ( w  e.  R.  /\  0R  e.  R. )  -> 
( <. 0R ,  1R >.  x.  <. w ,  0R >. )  =  <. (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) )
>. )
1410, 13mpan2 425 . . . . . . . . 9  |-  ( w  e.  R.  ->  ( <. 0R ,  1R >.  x. 
<. w ,  0R >. )  =  <. ( ( 0R 
.R  w )  +R  ( -1R  .R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) ) >. )
15 mulcomsrg 7758 . . . . . . . . . . . . . 14  |-  ( ( 0R  e.  R.  /\  w  e.  R. )  ->  ( 0R  .R  w
)  =  ( w  .R  0R ) )
1610, 15mpan 424 . . . . . . . . . . . . 13  |-  ( w  e.  R.  ->  ( 0R  .R  w )  =  ( w  .R  0R ) )
17 00sr 7770 . . . . . . . . . . . . 13  |-  ( w  e.  R.  ->  (
w  .R  0R )  =  0R )
1816, 17eqtrd 2210 . . . . . . . . . . . 12  |-  ( w  e.  R.  ->  ( 0R  .R  w )  =  0R )
1918oveq1d 5892 . . . . . . . . . . 11  |-  ( w  e.  R.  ->  (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) )  =  ( 0R  +R  ( -1R  .R  ( 1R  .R  0R ) ) ) )
20 00sr 7770 . . . . . . . . . . . . . . . 16  |-  ( 1R  e.  R.  ->  ( 1R  .R  0R )  =  0R )
2111, 20ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( 1R 
.R  0R )  =  0R
2221oveq2i 5888 . . . . . . . . . . . . . 14  |-  ( -1R 
.R  ( 1R  .R  0R ) )  =  ( -1R  .R  0R )
23 m1r 7753 . . . . . . . . . . . . . . 15  |-  -1R  e.  R.
24 00sr 7770 . . . . . . . . . . . . . . 15  |-  ( -1R 
e.  R.  ->  ( -1R 
.R  0R )  =  0R )
2523, 24ax-mp 5 . . . . . . . . . . . . . 14  |-  ( -1R 
.R  0R )  =  0R
2622, 25eqtri 2198 . . . . . . . . . . . . 13  |-  ( -1R 
.R  ( 1R  .R  0R ) )  =  0R
2726oveq2i 5888 . . . . . . . . . . . 12  |-  ( 0R 
+R  ( -1R  .R  ( 1R  .R  0R ) ) )  =  ( 0R  +R  0R )
28 0idsr 7768 . . . . . . . . . . . . 13  |-  ( 0R  e.  R.  ->  ( 0R  +R  0R )  =  0R )
2910, 28ax-mp 5 . . . . . . . . . . . 12  |-  ( 0R 
+R  0R )  =  0R
3027, 29eqtri 2198 . . . . . . . . . . 11  |-  ( 0R 
+R  ( -1R  .R  ( 1R  .R  0R ) ) )  =  0R
3119, 30eqtrdi 2226 . . . . . . . . . 10  |-  ( w  e.  R.  ->  (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) )  =  0R )
32 mulcomsrg 7758 . . . . . . . . . . . . . 14  |-  ( ( 1R  e.  R.  /\  w  e.  R. )  ->  ( 1R  .R  w
)  =  ( w  .R  1R ) )
3311, 32mpan 424 . . . . . . . . . . . . 13  |-  ( w  e.  R.  ->  ( 1R  .R  w )  =  ( w  .R  1R ) )
34 1idsr 7769 . . . . . . . . . . . . 13  |-  ( w  e.  R.  ->  (
w  .R  1R )  =  w )
3533, 34eqtrd 2210 . . . . . . . . . . . 12  |-  ( w  e.  R.  ->  ( 1R  .R  w )  =  w )
3635oveq1d 5892 . . . . . . . . . . 11  |-  ( w  e.  R.  ->  (
( 1R  .R  w
)  +R  ( 0R 
.R  0R ) )  =  ( w  +R  ( 0R  .R  0R ) ) )
37 00sr 7770 . . . . . . . . . . . . . 14  |-  ( 0R  e.  R.  ->  ( 0R  .R  0R )  =  0R )
3810, 37ax-mp 5 . . . . . . . . . . . . 13  |-  ( 0R 
.R  0R )  =  0R
3938oveq2i 5888 . . . . . . . . . . . 12  |-  ( w  +R  ( 0R  .R  0R ) )  =  ( w  +R  0R )
40 0idsr 7768 . . . . . . . . . . . 12  |-  ( w  e.  R.  ->  (
w  +R  0R )  =  w )
4139, 40eqtrid 2222 . . . . . . . . . . 11  |-  ( w  e.  R.  ->  (
w  +R  ( 0R 
.R  0R ) )  =  w )
4236, 41eqtrd 2210 . . . . . . . . . 10  |-  ( w  e.  R.  ->  (
( 1R  .R  w
)  +R  ( 0R 
.R  0R ) )  =  w )
4331, 42opeq12d 3788 . . . . . . . . 9  |-  ( w  e.  R.  ->  <. (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) )
>.  =  <. 0R ,  w >. )
4414, 43eqtrd 2210 . . . . . . . 8  |-  ( w  e.  R.  ->  ( <. 0R ,  1R >.  x. 
<. w ,  0R >. )  =  <. 0R ,  w >. )
459, 44eqtrid 2222 . . . . . . 7  |-  ( w  e.  R.  ->  (
_i  x.  <. w ,  0R >. )  =  <. 0R ,  w >. )
4645oveq2d 5893 . . . . . 6  |-  ( w  e.  R.  ->  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. )
)  =  ( <.
z ,  0R >.  + 
<. 0R ,  w >. ) )
4746adantl 277 . . . . 5  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) )  =  ( <.
z ,  0R >.  + 
<. 0R ,  w >. ) )
48 addcnsr 7835 . . . . . . 7  |-  ( ( ( z  e.  R.  /\  0R  e.  R. )  /\  ( 0R  e.  R.  /\  w  e.  R. )
)  ->  ( <. z ,  0R >.  +  <. 0R ,  w >. )  =  <. ( z  +R  0R ) ,  ( 0R  +R  w )
>. )
4910, 48mpanl2 435 . . . . . 6  |-  ( ( z  e.  R.  /\  ( 0R  e.  R.  /\  w  e.  R. )
)  ->  ( <. z ,  0R >.  +  <. 0R ,  w >. )  =  <. ( z  +R  0R ) ,  ( 0R  +R  w )
>. )
5010, 49mpanr1 437 . . . . 5  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  ( <. z ,  0R >.  +  <. 0R ,  w >. )  =  <. (
z  +R  0R ) ,  ( 0R  +R  w ) >. )
51 0idsr 7768 . . . . . 6  |-  ( z  e.  R.  ->  (
z  +R  0R )  =  z )
52 addcomsrg 7756 . . . . . . . 8  |-  ( ( 0R  e.  R.  /\  w  e.  R. )  ->  ( 0R  +R  w
)  =  ( w  +R  0R ) )
5310, 52mpan 424 . . . . . . 7  |-  ( w  e.  R.  ->  ( 0R  +R  w )  =  ( w  +R  0R ) )
5453, 40eqtrd 2210 . . . . . 6  |-  ( w  e.  R.  ->  ( 0R  +R  w )  =  w )
55 opeq12 3782 . . . . . 6  |-  ( ( ( z  +R  0R )  =  z  /\  ( 0R  +R  w
)  =  w )  ->  <. ( z  +R  0R ) ,  ( 0R  +R  w )
>.  =  <. z ,  w >. )
5651, 54, 55syl2an 289 . . . . 5  |-  ( ( z  e.  R.  /\  w  e.  R. )  -> 
<. ( z  +R  0R ) ,  ( 0R  +R  w ) >.  =  <. z ,  w >. )
5747, 50, 563eqtrrd 2215 . . . 4  |-  ( ( z  e.  R.  /\  w  e.  R. )  -> 
<. z ,  w >.  =  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) ) )
58 vex 2742 . . . . . 6  |-  z  e. 
_V
59 opexg 4230 . . . . . 6  |-  ( ( z  e.  _V  /\  0R  e.  R. )  ->  <. z ,  0R >.  e. 
_V )
6058, 10, 59mp2an 426 . . . . 5  |-  <. z ,  0R >.  e.  _V
61 vex 2742 . . . . . 6  |-  w  e. 
_V
62 opexg 4230 . . . . . 6  |-  ( ( w  e.  _V  /\  0R  e.  R. )  ->  <. w ,  0R >.  e. 
_V )
6361, 10, 62mp2an 426 . . . . 5  |-  <. w ,  0R >.  e.  _V
64 eleq1 2240 . . . . . . 7  |-  ( x  =  <. z ,  0R >.  ->  ( x  e.  RR  <->  <. z ,  0R >.  e.  RR ) )
65 eleq1 2240 . . . . . . 7  |-  ( y  =  <. w ,  0R >.  ->  ( y  e.  RR  <->  <. w ,  0R >.  e.  RR ) )
6664, 65bi2anan9 606 . . . . . 6  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( (
x  e.  RR  /\  y  e.  RR )  <->  (
<. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR ) ) )
67 oveq1 5884 . . . . . . . 8  |-  ( x  =  <. z ,  0R >.  ->  ( x  +  ( _i  x.  y
) )  =  (
<. z ,  0R >.  +  ( _i  x.  y
) ) )
68 oveq2 5885 . . . . . . . . 9  |-  ( y  =  <. w ,  0R >.  ->  ( _i  x.  y )  =  ( _i  x.  <. w ,  0R >. ) )
6968oveq2d 5893 . . . . . . . 8  |-  ( y  =  <. w ,  0R >.  ->  ( <. z ,  0R >.  +  (
_i  x.  y )
)  =  ( <.
z ,  0R >.  +  ( _i  x.  <. w ,  0R >. )
) )
7067, 69sylan9eq 2230 . . . . . . 7  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( x  +  ( _i  x.  y ) )  =  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) ) )
7170eqeq2d 2189 . . . . . 6  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( <. z ,  w >.  =  ( x  +  ( _i  x.  y ) )  <->  <. z ,  w >.  =  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) ) ) )
7266, 71anbi12d 473 . . . . 5  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( (
( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y
) ) )  <->  ( ( <. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR )  /\  <. z ,  w >.  =  ( <. z ,  0R >.  +  (
_i  x.  <. w ,  0R >. ) ) ) ) )
7360, 63, 72spc2ev 2835 . . . 4  |-  ( ( ( <. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR )  /\  <. z ,  w >.  =  ( <. z ,  0R >.  +  (
_i  x.  <. w ,  0R >. ) ) )  ->  E. x E. y
( ( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y ) ) ) )
747, 57, 73syl2anc 411 . . 3  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  E. x E. y
( ( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y ) ) ) )
75 r2ex 2497 . . 3  |-  ( E. x  e.  RR  E. y  e.  RR  <. z ,  w >.  =  (
x  +  ( _i  x.  y ) )  <->  E. x E. y ( ( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y
) ) ) )
7674, 75sylibr 134 . 2  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  E. x  e.  RR  E. y  e.  RR  <. z ,  w >.  =  ( x  +  ( _i  x.  y ) ) )
771, 3, 76optocl 4704 1  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   E.wrex 2456   _Vcvv 2739   <.cop 3597  (class class class)co 5877   R.cnr 7298   0Rc0r 7299   1Rc1r 7300   -1Rcm1r 7301    +R cplr 7302    .R cmr 7303   CCcc 7811   RRcr 7812   _ici 7815    + caddc 7816    x. cmul 7818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-i1p 7468  df-iplp 7469  df-imp 7470  df-enr 7727  df-nr 7728  df-plr 7729  df-mr 7730  df-0r 7732  df-1r 7733  df-m1r 7734  df-c 7819  df-i 7822  df-r 7823  df-add 7824  df-mul 7825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator