| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axcnre | Unicode version | ||
| Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 8110. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axcnre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 8005 |
. 2
| |
| 2 | eqeq1 2236 |
. . 3
| |
| 3 | 2 | 2rexbidv 2555 |
. 2
|
| 4 | opelreal 8014 |
. . . . . 6
| |
| 5 | opelreal 8014 |
. . . . . 6
| |
| 6 | 4, 5 | anbi12i 460 |
. . . . 5
|
| 7 | 6 | biimpri 133 |
. . . 4
|
| 8 | df-i 8008 |
. . . . . . . . 9
| |
| 9 | 8 | oveq1i 6011 |
. . . . . . . 8
|
| 10 | 0r 7937 |
. . . . . . . . . 10
| |
| 11 | 1sr 7938 |
. . . . . . . . . . 11
| |
| 12 | mulcnsr 8022 |
. . . . . . . . . . 11
| |
| 13 | 10, 11, 12 | mpanl12 436 |
. . . . . . . . . 10
|
| 14 | 10, 13 | mpan2 425 |
. . . . . . . . 9
|
| 15 | mulcomsrg 7944 |
. . . . . . . . . . . . . 14
| |
| 16 | 10, 15 | mpan 424 |
. . . . . . . . . . . . 13
|
| 17 | 00sr 7956 |
. . . . . . . . . . . . 13
| |
| 18 | 16, 17 | eqtrd 2262 |
. . . . . . . . . . . 12
|
| 19 | 18 | oveq1d 6016 |
. . . . . . . . . . 11
|
| 20 | 00sr 7956 |
. . . . . . . . . . . . . . . 16
| |
| 21 | 11, 20 | ax-mp 5 |
. . . . . . . . . . . . . . 15
|
| 22 | 21 | oveq2i 6012 |
. . . . . . . . . . . . . 14
|
| 23 | m1r 7939 |
. . . . . . . . . . . . . . 15
| |
| 24 | 00sr 7956 |
. . . . . . . . . . . . . . 15
| |
| 25 | 23, 24 | ax-mp 5 |
. . . . . . . . . . . . . 14
|
| 26 | 22, 25 | eqtri 2250 |
. . . . . . . . . . . . 13
|
| 27 | 26 | oveq2i 6012 |
. . . . . . . . . . . 12
|
| 28 | 0idsr 7954 |
. . . . . . . . . . . . 13
| |
| 29 | 10, 28 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 30 | 27, 29 | eqtri 2250 |
. . . . . . . . . . 11
|
| 31 | 19, 30 | eqtrdi 2278 |
. . . . . . . . . 10
|
| 32 | mulcomsrg 7944 |
. . . . . . . . . . . . . 14
| |
| 33 | 11, 32 | mpan 424 |
. . . . . . . . . . . . 13
|
| 34 | 1idsr 7955 |
. . . . . . . . . . . . 13
| |
| 35 | 33, 34 | eqtrd 2262 |
. . . . . . . . . . . 12
|
| 36 | 35 | oveq1d 6016 |
. . . . . . . . . . 11
|
| 37 | 00sr 7956 |
. . . . . . . . . . . . . 14
| |
| 38 | 10, 37 | ax-mp 5 |
. . . . . . . . . . . . 13
|
| 39 | 38 | oveq2i 6012 |
. . . . . . . . . . . 12
|
| 40 | 0idsr 7954 |
. . . . . . . . . . . 12
| |
| 41 | 39, 40 | eqtrid 2274 |
. . . . . . . . . . 11
|
| 42 | 36, 41 | eqtrd 2262 |
. . . . . . . . . 10
|
| 43 | 31, 42 | opeq12d 3865 |
. . . . . . . . 9
|
| 44 | 14, 43 | eqtrd 2262 |
. . . . . . . 8
|
| 45 | 9, 44 | eqtrid 2274 |
. . . . . . 7
|
| 46 | 45 | oveq2d 6017 |
. . . . . 6
|
| 47 | 46 | adantl 277 |
. . . . 5
|
| 48 | addcnsr 8021 |
. . . . . . 7
| |
| 49 | 10, 48 | mpanl2 435 |
. . . . . 6
|
| 50 | 10, 49 | mpanr1 437 |
. . . . 5
|
| 51 | 0idsr 7954 |
. . . . . 6
| |
| 52 | addcomsrg 7942 |
. . . . . . . 8
| |
| 53 | 10, 52 | mpan 424 |
. . . . . . 7
|
| 54 | 53, 40 | eqtrd 2262 |
. . . . . 6
|
| 55 | opeq12 3859 |
. . . . . 6
| |
| 56 | 51, 54, 55 | syl2an 289 |
. . . . 5
|
| 57 | 47, 50, 56 | 3eqtrrd 2267 |
. . . 4
|
| 58 | vex 2802 |
. . . . . 6
| |
| 59 | opexg 4314 |
. . . . . 6
| |
| 60 | 58, 10, 59 | mp2an 426 |
. . . . 5
|
| 61 | vex 2802 |
. . . . . 6
| |
| 62 | opexg 4314 |
. . . . . 6
| |
| 63 | 61, 10, 62 | mp2an 426 |
. . . . 5
|
| 64 | eleq1 2292 |
. . . . . . 7
| |
| 65 | eleq1 2292 |
. . . . . . 7
| |
| 66 | 64, 65 | bi2anan9 608 |
. . . . . 6
|
| 67 | oveq1 6008 |
. . . . . . . 8
| |
| 68 | oveq2 6009 |
. . . . . . . . 9
| |
| 69 | 68 | oveq2d 6017 |
. . . . . . . 8
|
| 70 | 67, 69 | sylan9eq 2282 |
. . . . . . 7
|
| 71 | 70 | eqeq2d 2241 |
. . . . . 6
|
| 72 | 66, 71 | anbi12d 473 |
. . . . 5
|
| 73 | 60, 63, 72 | spc2ev 2899 |
. . . 4
|
| 74 | 7, 57, 73 | syl2anc 411 |
. . 3
|
| 75 | r2ex 2550 |
. . 3
| |
| 76 | 74, 75 | sylibr 134 |
. 2
|
| 77 | 1, 3, 76 | optocl 4795 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-1o 6562 df-2o 6563 df-oadd 6566 df-omul 6567 df-er 6680 df-ec 6682 df-qs 6686 df-ni 7491 df-pli 7492 df-mi 7493 df-lti 7494 df-plpq 7531 df-mpq 7532 df-enq 7534 df-nqqs 7535 df-plqqs 7536 df-mqqs 7537 df-1nqqs 7538 df-rq 7539 df-ltnqqs 7540 df-enq0 7611 df-nq0 7612 df-0nq0 7613 df-plq0 7614 df-mq0 7615 df-inp 7653 df-i1p 7654 df-iplp 7655 df-imp 7656 df-enr 7913 df-nr 7914 df-plr 7915 df-mr 7916 df-0r 7918 df-1r 7919 df-m1r 7920 df-c 8005 df-i 8008 df-r 8009 df-add 8010 df-mul 8011 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |