| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axcnre | Unicode version | ||
| Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 8007. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axcnre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 7902 |
. 2
| |
| 2 | eqeq1 2203 |
. . 3
| |
| 3 | 2 | 2rexbidv 2522 |
. 2
|
| 4 | opelreal 7911 |
. . . . . 6
| |
| 5 | opelreal 7911 |
. . . . . 6
| |
| 6 | 4, 5 | anbi12i 460 |
. . . . 5
|
| 7 | 6 | biimpri 133 |
. . . 4
|
| 8 | df-i 7905 |
. . . . . . . . 9
| |
| 9 | 8 | oveq1i 5935 |
. . . . . . . 8
|
| 10 | 0r 7834 |
. . . . . . . . . 10
| |
| 11 | 1sr 7835 |
. . . . . . . . . . 11
| |
| 12 | mulcnsr 7919 |
. . . . . . . . . . 11
| |
| 13 | 10, 11, 12 | mpanl12 436 |
. . . . . . . . . 10
|
| 14 | 10, 13 | mpan2 425 |
. . . . . . . . 9
|
| 15 | mulcomsrg 7841 |
. . . . . . . . . . . . . 14
| |
| 16 | 10, 15 | mpan 424 |
. . . . . . . . . . . . 13
|
| 17 | 00sr 7853 |
. . . . . . . . . . . . 13
| |
| 18 | 16, 17 | eqtrd 2229 |
. . . . . . . . . . . 12
|
| 19 | 18 | oveq1d 5940 |
. . . . . . . . . . 11
|
| 20 | 00sr 7853 |
. . . . . . . . . . . . . . . 16
| |
| 21 | 11, 20 | ax-mp 5 |
. . . . . . . . . . . . . . 15
|
| 22 | 21 | oveq2i 5936 |
. . . . . . . . . . . . . 14
|
| 23 | m1r 7836 |
. . . . . . . . . . . . . . 15
| |
| 24 | 00sr 7853 |
. . . . . . . . . . . . . . 15
| |
| 25 | 23, 24 | ax-mp 5 |
. . . . . . . . . . . . . 14
|
| 26 | 22, 25 | eqtri 2217 |
. . . . . . . . . . . . 13
|
| 27 | 26 | oveq2i 5936 |
. . . . . . . . . . . 12
|
| 28 | 0idsr 7851 |
. . . . . . . . . . . . 13
| |
| 29 | 10, 28 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 30 | 27, 29 | eqtri 2217 |
. . . . . . . . . . 11
|
| 31 | 19, 30 | eqtrdi 2245 |
. . . . . . . . . 10
|
| 32 | mulcomsrg 7841 |
. . . . . . . . . . . . . 14
| |
| 33 | 11, 32 | mpan 424 |
. . . . . . . . . . . . 13
|
| 34 | 1idsr 7852 |
. . . . . . . . . . . . 13
| |
| 35 | 33, 34 | eqtrd 2229 |
. . . . . . . . . . . 12
|
| 36 | 35 | oveq1d 5940 |
. . . . . . . . . . 11
|
| 37 | 00sr 7853 |
. . . . . . . . . . . . . 14
| |
| 38 | 10, 37 | ax-mp 5 |
. . . . . . . . . . . . 13
|
| 39 | 38 | oveq2i 5936 |
. . . . . . . . . . . 12
|
| 40 | 0idsr 7851 |
. . . . . . . . . . . 12
| |
| 41 | 39, 40 | eqtrid 2241 |
. . . . . . . . . . 11
|
| 42 | 36, 41 | eqtrd 2229 |
. . . . . . . . . 10
|
| 43 | 31, 42 | opeq12d 3817 |
. . . . . . . . 9
|
| 44 | 14, 43 | eqtrd 2229 |
. . . . . . . 8
|
| 45 | 9, 44 | eqtrid 2241 |
. . . . . . 7
|
| 46 | 45 | oveq2d 5941 |
. . . . . 6
|
| 47 | 46 | adantl 277 |
. . . . 5
|
| 48 | addcnsr 7918 |
. . . . . . 7
| |
| 49 | 10, 48 | mpanl2 435 |
. . . . . 6
|
| 50 | 10, 49 | mpanr1 437 |
. . . . 5
|
| 51 | 0idsr 7851 |
. . . . . 6
| |
| 52 | addcomsrg 7839 |
. . . . . . . 8
| |
| 53 | 10, 52 | mpan 424 |
. . . . . . 7
|
| 54 | 53, 40 | eqtrd 2229 |
. . . . . 6
|
| 55 | opeq12 3811 |
. . . . . 6
| |
| 56 | 51, 54, 55 | syl2an 289 |
. . . . 5
|
| 57 | 47, 50, 56 | 3eqtrrd 2234 |
. . . 4
|
| 58 | vex 2766 |
. . . . . 6
| |
| 59 | opexg 4262 |
. . . . . 6
| |
| 60 | 58, 10, 59 | mp2an 426 |
. . . . 5
|
| 61 | vex 2766 |
. . . . . 6
| |
| 62 | opexg 4262 |
. . . . . 6
| |
| 63 | 61, 10, 62 | mp2an 426 |
. . . . 5
|
| 64 | eleq1 2259 |
. . . . . . 7
| |
| 65 | eleq1 2259 |
. . . . . . 7
| |
| 66 | 64, 65 | bi2anan9 606 |
. . . . . 6
|
| 67 | oveq1 5932 |
. . . . . . . 8
| |
| 68 | oveq2 5933 |
. . . . . . . . 9
| |
| 69 | 68 | oveq2d 5941 |
. . . . . . . 8
|
| 70 | 67, 69 | sylan9eq 2249 |
. . . . . . 7
|
| 71 | 70 | eqeq2d 2208 |
. . . . . 6
|
| 72 | 66, 71 | anbi12d 473 |
. . . . 5
|
| 73 | 60, 63, 72 | spc2ev 2860 |
. . . 4
|
| 74 | 7, 57, 73 | syl2anc 411 |
. . 3
|
| 75 | r2ex 2517 |
. . 3
| |
| 76 | 74, 75 | sylibr 134 |
. 2
|
| 77 | 1, 3, 76 | optocl 4740 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-2o 6484 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-lti 7391 df-plpq 7428 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-mqqs 7434 df-1nqqs 7435 df-rq 7436 df-ltnqqs 7437 df-enq0 7508 df-nq0 7509 df-0nq0 7510 df-plq0 7511 df-mq0 7512 df-inp 7550 df-i1p 7551 df-iplp 7552 df-imp 7553 df-enr 7810 df-nr 7811 df-plr 7812 df-mr 7813 df-0r 7815 df-1r 7816 df-m1r 7817 df-c 7902 df-i 7905 df-r 7906 df-add 7907 df-mul 7908 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |