ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcnre Unicode version

Theorem axcnre 7609
Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 7649. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axcnre  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Distinct variable group:    x, y, A

Proof of Theorem axcnre
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-c 7546 . 2  |-  CC  =  ( R.  X.  R. )
2 eqeq1 2119 . . 3  |-  ( <.
z ,  w >.  =  A  ->  ( <. z ,  w >.  =  ( x  +  ( _i  x.  y ) )  <-> 
A  =  ( x  +  ( _i  x.  y ) ) ) )
322rexbidv 2432 . 2  |-  ( <.
z ,  w >.  =  A  ->  ( E. x  e.  RR  E. y  e.  RR  <. z ,  w >.  =  ( x  +  ( _i  x.  y
) )  <->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) ) )
4 opelreal 7555 . . . . . 6  |-  ( <.
z ,  0R >.  e.  RR  <->  z  e.  R. )
5 opelreal 7555 . . . . . 6  |-  ( <.
w ,  0R >.  e.  RR  <->  w  e.  R. )
64, 5anbi12i 453 . . . . 5  |-  ( (
<. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR ) 
<->  ( z  e.  R.  /\  w  e.  R. )
)
76biimpri 132 . . . 4  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  ( <. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR ) )
8 df-i 7549 . . . . . . . . 9  |-  _i  =  <. 0R ,  1R >.
98oveq1i 5736 . . . . . . . 8  |-  ( _i  x.  <. w ,  0R >. )  =  ( <. 0R ,  1R >.  x.  <. w ,  0R >. )
10 0r 7486 . . . . . . . . . 10  |-  0R  e.  R.
11 1sr 7487 . . . . . . . . . . 11  |-  1R  e.  R.
12 mulcnsr 7563 . . . . . . . . . . 11  |-  ( ( ( 0R  e.  R.  /\ 
1R  e.  R. )  /\  ( w  e.  R.  /\  0R  e.  R. )
)  ->  ( <. 0R ,  1R >.  x.  <. w ,  0R >. )  =  <. ( ( 0R 
.R  w )  +R  ( -1R  .R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) ) >. )
1310, 11, 12mpanl12 430 . . . . . . . . . 10  |-  ( ( w  e.  R.  /\  0R  e.  R. )  -> 
( <. 0R ,  1R >.  x.  <. w ,  0R >. )  =  <. (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) )
>. )
1410, 13mpan2 419 . . . . . . . . 9  |-  ( w  e.  R.  ->  ( <. 0R ,  1R >.  x. 
<. w ,  0R >. )  =  <. ( ( 0R 
.R  w )  +R  ( -1R  .R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) ) >. )
15 mulcomsrg 7493 . . . . . . . . . . . . . 14  |-  ( ( 0R  e.  R.  /\  w  e.  R. )  ->  ( 0R  .R  w
)  =  ( w  .R  0R ) )
1610, 15mpan 418 . . . . . . . . . . . . 13  |-  ( w  e.  R.  ->  ( 0R  .R  w )  =  ( w  .R  0R ) )
17 00sr 7505 . . . . . . . . . . . . 13  |-  ( w  e.  R.  ->  (
w  .R  0R )  =  0R )
1816, 17eqtrd 2145 . . . . . . . . . . . 12  |-  ( w  e.  R.  ->  ( 0R  .R  w )  =  0R )
1918oveq1d 5741 . . . . . . . . . . 11  |-  ( w  e.  R.  ->  (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) )  =  ( 0R  +R  ( -1R  .R  ( 1R  .R  0R ) ) ) )
20 00sr 7505 . . . . . . . . . . . . . . . 16  |-  ( 1R  e.  R.  ->  ( 1R  .R  0R )  =  0R )
2111, 20ax-mp 7 . . . . . . . . . . . . . . 15  |-  ( 1R 
.R  0R )  =  0R
2221oveq2i 5737 . . . . . . . . . . . . . 14  |-  ( -1R 
.R  ( 1R  .R  0R ) )  =  ( -1R  .R  0R )
23 m1r 7488 . . . . . . . . . . . . . . 15  |-  -1R  e.  R.
24 00sr 7505 . . . . . . . . . . . . . . 15  |-  ( -1R 
e.  R.  ->  ( -1R 
.R  0R )  =  0R )
2523, 24ax-mp 7 . . . . . . . . . . . . . 14  |-  ( -1R 
.R  0R )  =  0R
2622, 25eqtri 2133 . . . . . . . . . . . . 13  |-  ( -1R 
.R  ( 1R  .R  0R ) )  =  0R
2726oveq2i 5737 . . . . . . . . . . . 12  |-  ( 0R 
+R  ( -1R  .R  ( 1R  .R  0R ) ) )  =  ( 0R  +R  0R )
28 0idsr 7503 . . . . . . . . . . . . 13  |-  ( 0R  e.  R.  ->  ( 0R  +R  0R )  =  0R )
2910, 28ax-mp 7 . . . . . . . . . . . 12  |-  ( 0R 
+R  0R )  =  0R
3027, 29eqtri 2133 . . . . . . . . . . 11  |-  ( 0R 
+R  ( -1R  .R  ( 1R  .R  0R ) ) )  =  0R
3119, 30syl6eq 2161 . . . . . . . . . 10  |-  ( w  e.  R.  ->  (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) )  =  0R )
32 mulcomsrg 7493 . . . . . . . . . . . . . 14  |-  ( ( 1R  e.  R.  /\  w  e.  R. )  ->  ( 1R  .R  w
)  =  ( w  .R  1R ) )
3311, 32mpan 418 . . . . . . . . . . . . 13  |-  ( w  e.  R.  ->  ( 1R  .R  w )  =  ( w  .R  1R ) )
34 1idsr 7504 . . . . . . . . . . . . 13  |-  ( w  e.  R.  ->  (
w  .R  1R )  =  w )
3533, 34eqtrd 2145 . . . . . . . . . . . 12  |-  ( w  e.  R.  ->  ( 1R  .R  w )  =  w )
3635oveq1d 5741 . . . . . . . . . . 11  |-  ( w  e.  R.  ->  (
( 1R  .R  w
)  +R  ( 0R 
.R  0R ) )  =  ( w  +R  ( 0R  .R  0R ) ) )
37 00sr 7505 . . . . . . . . . . . . . 14  |-  ( 0R  e.  R.  ->  ( 0R  .R  0R )  =  0R )
3810, 37ax-mp 7 . . . . . . . . . . . . 13  |-  ( 0R 
.R  0R )  =  0R
3938oveq2i 5737 . . . . . . . . . . . 12  |-  ( w  +R  ( 0R  .R  0R ) )  =  ( w  +R  0R )
40 0idsr 7503 . . . . . . . . . . . 12  |-  ( w  e.  R.  ->  (
w  +R  0R )  =  w )
4139, 40syl5eq 2157 . . . . . . . . . . 11  |-  ( w  e.  R.  ->  (
w  +R  ( 0R 
.R  0R ) )  =  w )
4236, 41eqtrd 2145 . . . . . . . . . 10  |-  ( w  e.  R.  ->  (
( 1R  .R  w
)  +R  ( 0R 
.R  0R ) )  =  w )
4331, 42opeq12d 3677 . . . . . . . . 9  |-  ( w  e.  R.  ->  <. (
( 0R  .R  w
)  +R  ( -1R 
.R  ( 1R  .R  0R ) ) ) ,  ( ( 1R  .R  w )  +R  ( 0R  .R  0R ) )
>.  =  <. 0R ,  w >. )
4414, 43eqtrd 2145 . . . . . . . 8  |-  ( w  e.  R.  ->  ( <. 0R ,  1R >.  x. 
<. w ,  0R >. )  =  <. 0R ,  w >. )
459, 44syl5eq 2157 . . . . . . 7  |-  ( w  e.  R.  ->  (
_i  x.  <. w ,  0R >. )  =  <. 0R ,  w >. )
4645oveq2d 5742 . . . . . 6  |-  ( w  e.  R.  ->  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. )
)  =  ( <.
z ,  0R >.  + 
<. 0R ,  w >. ) )
4746adantl 273 . . . . 5  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) )  =  ( <.
z ,  0R >.  + 
<. 0R ,  w >. ) )
48 addcnsr 7562 . . . . . . 7  |-  ( ( ( z  e.  R.  /\  0R  e.  R. )  /\  ( 0R  e.  R.  /\  w  e.  R. )
)  ->  ( <. z ,  0R >.  +  <. 0R ,  w >. )  =  <. ( z  +R  0R ) ,  ( 0R  +R  w )
>. )
4910, 48mpanl2 429 . . . . . 6  |-  ( ( z  e.  R.  /\  ( 0R  e.  R.  /\  w  e.  R. )
)  ->  ( <. z ,  0R >.  +  <. 0R ,  w >. )  =  <. ( z  +R  0R ) ,  ( 0R  +R  w )
>. )
5010, 49mpanr1 431 . . . . 5  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  ( <. z ,  0R >.  +  <. 0R ,  w >. )  =  <. (
z  +R  0R ) ,  ( 0R  +R  w ) >. )
51 0idsr 7503 . . . . . 6  |-  ( z  e.  R.  ->  (
z  +R  0R )  =  z )
52 addcomsrg 7491 . . . . . . . 8  |-  ( ( 0R  e.  R.  /\  w  e.  R. )  ->  ( 0R  +R  w
)  =  ( w  +R  0R ) )
5310, 52mpan 418 . . . . . . 7  |-  ( w  e.  R.  ->  ( 0R  +R  w )  =  ( w  +R  0R ) )
5453, 40eqtrd 2145 . . . . . 6  |-  ( w  e.  R.  ->  ( 0R  +R  w )  =  w )
55 opeq12 3671 . . . . . 6  |-  ( ( ( z  +R  0R )  =  z  /\  ( 0R  +R  w
)  =  w )  ->  <. ( z  +R  0R ) ,  ( 0R  +R  w )
>.  =  <. z ,  w >. )
5651, 54, 55syl2an 285 . . . . 5  |-  ( ( z  e.  R.  /\  w  e.  R. )  -> 
<. ( z  +R  0R ) ,  ( 0R  +R  w ) >.  =  <. z ,  w >. )
5747, 50, 563eqtrrd 2150 . . . 4  |-  ( ( z  e.  R.  /\  w  e.  R. )  -> 
<. z ,  w >.  =  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) ) )
58 vex 2658 . . . . . 6  |-  z  e. 
_V
59 opexg 4108 . . . . . 6  |-  ( ( z  e.  _V  /\  0R  e.  R. )  ->  <. z ,  0R >.  e. 
_V )
6058, 10, 59mp2an 420 . . . . 5  |-  <. z ,  0R >.  e.  _V
61 vex 2658 . . . . . 6  |-  w  e. 
_V
62 opexg 4108 . . . . . 6  |-  ( ( w  e.  _V  /\  0R  e.  R. )  ->  <. w ,  0R >.  e. 
_V )
6361, 10, 62mp2an 420 . . . . 5  |-  <. w ,  0R >.  e.  _V
64 eleq1 2175 . . . . . . 7  |-  ( x  =  <. z ,  0R >.  ->  ( x  e.  RR  <->  <. z ,  0R >.  e.  RR ) )
65 eleq1 2175 . . . . . . 7  |-  ( y  =  <. w ,  0R >.  ->  ( y  e.  RR  <->  <. w ,  0R >.  e.  RR ) )
6664, 65bi2anan9 578 . . . . . 6  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( (
x  e.  RR  /\  y  e.  RR )  <->  (
<. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR ) ) )
67 oveq1 5733 . . . . . . . 8  |-  ( x  =  <. z ,  0R >.  ->  ( x  +  ( _i  x.  y
) )  =  (
<. z ,  0R >.  +  ( _i  x.  y
) ) )
68 oveq2 5734 . . . . . . . . 9  |-  ( y  =  <. w ,  0R >.  ->  ( _i  x.  y )  =  ( _i  x.  <. w ,  0R >. ) )
6968oveq2d 5742 . . . . . . . 8  |-  ( y  =  <. w ,  0R >.  ->  ( <. z ,  0R >.  +  (
_i  x.  y )
)  =  ( <.
z ,  0R >.  +  ( _i  x.  <. w ,  0R >. )
) )
7067, 69sylan9eq 2165 . . . . . . 7  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( x  +  ( _i  x.  y ) )  =  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) ) )
7170eqeq2d 2124 . . . . . 6  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( <. z ,  w >.  =  ( x  +  ( _i  x.  y ) )  <->  <. z ,  w >.  =  ( <. z ,  0R >.  +  ( _i  x.  <. w ,  0R >. ) ) ) )
7266, 71anbi12d 462 . . . . 5  |-  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  ->  ( (
( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y
) ) )  <->  ( ( <. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR )  /\  <. z ,  w >.  =  ( <. z ,  0R >.  +  (
_i  x.  <. w ,  0R >. ) ) ) ) )
7360, 63, 72spc2ev 2750 . . . 4  |-  ( ( ( <. z ,  0R >.  e.  RR  /\  <. w ,  0R >.  e.  RR )  /\  <. z ,  w >.  =  ( <. z ,  0R >.  +  (
_i  x.  <. w ,  0R >. ) ) )  ->  E. x E. y
( ( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y ) ) ) )
747, 57, 73syl2anc 406 . . 3  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  E. x E. y
( ( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y ) ) ) )
75 r2ex 2427 . . 3  |-  ( E. x  e.  RR  E. y  e.  RR  <. z ,  w >.  =  (
x  +  ( _i  x.  y ) )  <->  E. x E. y ( ( x  e.  RR  /\  y  e.  RR )  /\  <. z ,  w >.  =  ( x  +  ( _i  x.  y
) ) ) )
7674, 75sylibr 133 . 2  |-  ( ( z  e.  R.  /\  w  e.  R. )  ->  E. x  e.  RR  E. y  e.  RR  <. z ,  w >.  =  ( x  +  ( _i  x.  y ) ) )
771, 3, 76optocl 4573 1  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1312   E.wex 1449    e. wcel 1461   E.wrex 2389   _Vcvv 2655   <.cop 3494  (class class class)co 5726   R.cnr 7046   0Rc0r 7047   1Rc1r 7048   -1Rcm1r 7049    +R cplr 7050    .R cmr 7051   CCcc 7538   RRcr 7539   _ici 7542    + caddc 7543    x. cmul 7545
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-eprel 4169  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5989  df-2nd 5990  df-recs 6153  df-irdg 6218  df-1o 6264  df-2o 6265  df-oadd 6268  df-omul 6269  df-er 6380  df-ec 6382  df-qs 6386  df-ni 7053  df-pli 7054  df-mi 7055  df-lti 7056  df-plpq 7093  df-mpq 7094  df-enq 7096  df-nqqs 7097  df-plqqs 7098  df-mqqs 7099  df-1nqqs 7100  df-rq 7101  df-ltnqqs 7102  df-enq0 7173  df-nq0 7174  df-0nq0 7175  df-plq0 7176  df-mq0 7177  df-inp 7215  df-i1p 7216  df-iplp 7217  df-imp 7218  df-enr 7462  df-nr 7463  df-plr 7464  df-mr 7465  df-0r 7467  df-1r 7468  df-m1r 7469  df-c 7546  df-i 7549  df-r 7550  df-add 7551  df-mul 7552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator