![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nbn | Unicode version |
Description: The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
Ref | Expression |
---|---|
nbn.1 |
![]() ![]() ![]() |
Ref | Expression |
---|---|
nbn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbn.1 |
. . 3
![]() ![]() ![]() | |
2 | bibif 699 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | bicomi 132 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nbn3 701 nbfal 1375 n0rf 3450 eq0 3456 disj 3486 dm0rn0 4859 reldm0 4860 |
Copyright terms: Public domain | W3C validator |