ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nbn Unicode version

Theorem nbn 689
Description: The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
Hypothesis
Ref Expression
nbn.1  |-  -.  ph
Assertion
Ref Expression
nbn  |-  ( -. 
ps 
<->  ( ps  <->  ph ) )

Proof of Theorem nbn
StepHypRef Expression
1 nbn.1 . . 3  |-  -.  ph
2 bibif 688 . . 3  |-  ( -. 
ph  ->  ( ( ps  <->  ph )  <->  -.  ps )
)
31, 2ax-mp 5 . 2  |-  ( ( ps  <->  ph )  <->  -.  ps )
43bicomi 131 1  |-  ( -. 
ps 
<->  ( ps  <->  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  nbn3  690  nbfal  1354  n0rf  3421  eq0  3427  disj  3457  dm0rn0  4821  reldm0  4822
  Copyright terms: Public domain W3C validator