Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eq0 | Unicode version |
Description: The empty set has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
eq0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2312 | . . 3 | |
2 | nfcv 2312 | . . 3 | |
3 | 1, 2 | cleqf 2337 | . 2 |
4 | noel 3418 | . . . 4 | |
5 | 4 | nbn 694 | . . 3 |
6 | 5 | albii 1463 | . 2 |
7 | 3, 6 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wb 104 wal 1346 wceq 1348 wcel 2141 c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-nul 3415 |
This theorem is referenced by: notm0 3435 nel0 3436 0el 3437 rabeq0 3444 abeq0 3445 ssdif0im 3479 inssdif0im 3482 ralf0 3518 snprc 3648 uni0b 3821 disjiun 3984 0ex 4116 dm0 4825 reldm0 4829 dmsn0 5078 dmsn0el 5080 fzo0 10124 fzouzdisj 10136 |
Copyright terms: Public domain | W3C validator |