| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eq0 | Unicode version | ||
| Description: The empty set has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) |
| Ref | Expression |
|---|---|
| eq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 |
. . 3
| |
| 2 | nfcv 2348 |
. . 3
| |
| 3 | 1, 2 | cleqf 2373 |
. 2
|
| 4 | noel 3464 |
. . . 4
| |
| 5 | 4 | nbn 701 |
. . 3
|
| 6 | 5 | albii 1493 |
. 2
|
| 7 | 3, 6 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-nul 3461 |
| This theorem is referenced by: notm0 3481 nel0 3482 0el 3483 rabeq0 3490 abeq0 3491 ssdif0im 3525 inssdif0im 3528 ralf0 3563 snprc 3698 uni0b 3875 disjiun 4039 0ex 4171 dm0 4892 reldm0 4896 dmsn0 5150 dmsn0el 5152 fzo0 10292 fzouzdisj 10304 |
| Copyright terms: Public domain | W3C validator |