Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eq0 | Unicode version |
Description: The empty set has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
eq0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2296 | . . 3 | |
2 | nfcv 2296 | . . 3 | |
3 | 1, 2 | cleqf 2321 | . 2 |
4 | noel 3394 | . . . 4 | |
5 | 4 | nbn 689 | . . 3 |
6 | 5 | albii 1447 | . 2 |
7 | 3, 6 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wb 104 wal 1330 wceq 1332 wcel 2125 c0 3390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-dif 3100 df-nul 3391 |
This theorem is referenced by: notm0 3410 nel0 3411 0el 3412 rabeq0 3419 abeq0 3420 ssdif0im 3454 inssdif0im 3457 ralf0 3493 snprc 3620 uni0b 3793 disjiun 3956 0ex 4087 dm0 4793 reldm0 4797 dmsn0 5046 dmsn0el 5048 fzo0 10045 fzouzdisj 10057 |
Copyright terms: Public domain | W3C validator |