| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eq0 | Unicode version | ||
| Description: The empty set has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) |
| Ref | Expression |
|---|---|
| eq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2350 |
. . 3
| |
| 2 | nfcv 2350 |
. . 3
| |
| 3 | 1, 2 | cleqf 2375 |
. 2
|
| 4 | noel 3472 |
. . . 4
| |
| 5 | 4 | nbn 701 |
. . 3
|
| 6 | 5 | albii 1494 |
. 2
|
| 7 | 3, 6 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-nul 3469 |
| This theorem is referenced by: notm0 3489 nel0 3490 0el 3491 rabeq0 3498 abeq0 3499 ssdif0im 3533 inssdif0im 3536 ralf0 3571 snprc 3708 uni0b 3889 disjiun 4054 0ex 4187 dm0 4911 reldm0 4915 dmsn0 5169 dmsn0el 5171 fzo0 10327 fzouzdisj 10339 |
| Copyright terms: Public domain | W3C validator |