ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disj Unicode version

Theorem disj 3457
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.)
Assertion
Ref Expression
disj  |-  ( ( A  i^i  B )  =  (/)  <->  A. x  e.  A  -.  x  e.  B
)
Distinct variable groups:    x, A    x, B

Proof of Theorem disj
StepHypRef Expression
1 df-in 3122 . . . 4  |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B ) }
21eqeq1i 2173 . . 3  |-  ( ( A  i^i  B )  =  (/)  <->  { x  |  ( x  e.  A  /\  x  e.  B ) }  =  (/) )
3 abeq1 2276 . . 3  |-  ( { x  |  ( x  e.  A  /\  x  e.  B ) }  =  (/)  <->  A. x ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  (/) ) )
4 imnan 680 . . . . 5  |-  ( ( x  e.  A  ->  -.  x  e.  B
)  <->  -.  ( x  e.  A  /\  x  e.  B ) )
5 noel 3413 . . . . . 6  |-  -.  x  e.  (/)
65nbn 689 . . . . 5  |-  ( -.  ( x  e.  A  /\  x  e.  B
)  <->  ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  (/) ) )
74, 6bitr2i 184 . . . 4  |-  ( ( ( x  e.  A  /\  x  e.  B
)  <->  x  e.  (/) )  <->  ( x  e.  A  ->  -.  x  e.  B ) )
87albii 1458 . . 3  |-  ( A. x ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  (/) )  <->  A. x ( x  e.  A  ->  -.  x  e.  B )
)
92, 3, 83bitri 205 . 2  |-  ( ( A  i^i  B )  =  (/)  <->  A. x ( x  e.  A  ->  -.  x  e.  B )
)
10 df-ral 2449 . 2  |-  ( A. x  e.  A  -.  x  e.  B  <->  A. x
( x  e.  A  ->  -.  x  e.  B
) )
119, 10bitr4i 186 1  |-  ( ( A  i^i  B )  =  (/)  <->  A. x  e.  A  -.  x  e.  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444    i^i cin 3115   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-dif 3118  df-in 3122  df-nul 3410
This theorem is referenced by:  disjr  3458  disj1  3459  disjne  3462  f0rn0  5382  renfdisj  7958  fvinim0ffz  10176  fxnn0nninf  10373  fprodsplitdc  11537  exmidunben  12359  dedekindeulemuub  13235  dedekindeulemlu  13239  dedekindicclemuub  13244  dedekindicclemlu  13248  ivthinclemdisj  13258  exmidsbthrlem  13901
  Copyright terms: Public domain W3C validator