Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disj | Unicode version |
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.) |
Ref | Expression |
---|---|
disj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-in 3122 | . . . 4 | |
2 | 1 | eqeq1i 2173 | . . 3 |
3 | abeq1 2276 | . . 3 | |
4 | imnan 680 | . . . . 5 | |
5 | noel 3413 | . . . . . 6 | |
6 | 5 | nbn 689 | . . . . 5 |
7 | 4, 6 | bitr2i 184 | . . . 4 |
8 | 7 | albii 1458 | . . 3 |
9 | 2, 3, 8 | 3bitri 205 | . 2 |
10 | df-ral 2449 | . 2 | |
11 | 9, 10 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wal 1341 wceq 1343 wcel 2136 cab 2151 wral 2444 cin 3115 c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-dif 3118 df-in 3122 df-nul 3410 |
This theorem is referenced by: disjr 3458 disj1 3459 disjne 3462 f0rn0 5382 renfdisj 7958 fvinim0ffz 10176 fxnn0nninf 10373 fprodsplitdc 11537 exmidunben 12359 dedekindeulemuub 13235 dedekindeulemlu 13239 dedekindicclemuub 13244 dedekindicclemlu 13248 ivthinclemdisj 13258 exmidsbthrlem 13901 |
Copyright terms: Public domain | W3C validator |