ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disj Unicode version

Theorem disj 3540
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.)
Assertion
Ref Expression
disj  |-  ( ( A  i^i  B )  =  (/)  <->  A. x  e.  A  -.  x  e.  B
)
Distinct variable groups:    x, A    x, B

Proof of Theorem disj
StepHypRef Expression
1 df-in 3203 . . . 4  |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B ) }
21eqeq1i 2237 . . 3  |-  ( ( A  i^i  B )  =  (/)  <->  { x  |  ( x  e.  A  /\  x  e.  B ) }  =  (/) )
3 abeq1 2339 . . 3  |-  ( { x  |  ( x  e.  A  /\  x  e.  B ) }  =  (/)  <->  A. x ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  (/) ) )
4 imnan 694 . . . . 5  |-  ( ( x  e.  A  ->  -.  x  e.  B
)  <->  -.  ( x  e.  A  /\  x  e.  B ) )
5 noel 3495 . . . . . 6  |-  -.  x  e.  (/)
65nbn 704 . . . . 5  |-  ( -.  ( x  e.  A  /\  x  e.  B
)  <->  ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  (/) ) )
74, 6bitr2i 185 . . . 4  |-  ( ( ( x  e.  A  /\  x  e.  B
)  <->  x  e.  (/) )  <->  ( x  e.  A  ->  -.  x  e.  B ) )
87albii 1516 . . 3  |-  ( A. x ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  (/) )  <->  A. x ( x  e.  A  ->  -.  x  e.  B )
)
92, 3, 83bitri 206 . 2  |-  ( ( A  i^i  B )  =  (/)  <->  A. x ( x  e.  A  ->  -.  x  e.  B )
)
10 df-ral 2513 . 2  |-  ( A. x  e.  A  -.  x  e.  B  <->  A. x
( x  e.  A  ->  -.  x  e.  B
) )
119, 10bitr4i 187 1  |-  ( ( A  i^i  B )  =  (/)  <->  A. x  e.  A  -.  x  e.  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508    i^i cin 3196   (/)c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-dif 3199  df-in 3203  df-nul 3492
This theorem is referenced by:  disjr  3541  disj1  3542  disjne  3545  f0rn0  5519  renfdisj  8202  fvinim0ffz  10442  xnn0nnen  10654  fxnn0nninf  10656  fprodsplitdc  12102  exmidunben  12992  dedekindeulemuub  15285  dedekindeulemlu  15289  dedekindicclemuub  15294  dedekindicclemlu  15298  ivthinclemdisj  15308  exmidsbthrlem  16349
  Copyright terms: Public domain W3C validator