Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disj | Unicode version |
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.) |
Ref | Expression |
---|---|
disj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-in 3108 | . . . 4 | |
2 | 1 | eqeq1i 2165 | . . 3 |
3 | abeq1 2267 | . . 3 | |
4 | imnan 680 | . . . . 5 | |
5 | noel 3398 | . . . . . 6 | |
6 | 5 | nbn 689 | . . . . 5 |
7 | 4, 6 | bitr2i 184 | . . . 4 |
8 | 7 | albii 1450 | . . 3 |
9 | 2, 3, 8 | 3bitri 205 | . 2 |
10 | df-ral 2440 | . 2 | |
11 | 9, 10 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wal 1333 wceq 1335 wcel 2128 cab 2143 wral 2435 cin 3101 c0 3394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-dif 3104 df-in 3108 df-nul 3395 |
This theorem is referenced by: disjr 3443 disj1 3444 disjne 3447 f0rn0 5361 renfdisj 7920 fvinim0ffz 10122 fxnn0nninf 10319 fprodsplitdc 11475 exmidunben 12127 dedekindeulemuub 12955 dedekindeulemlu 12959 dedekindicclemuub 12964 dedekindicclemlu 12968 ivthinclemdisj 12978 exmidsbthrlem 13556 |
Copyright terms: Public domain | W3C validator |