ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disj Unicode version

Theorem disj 3406
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.)
Assertion
Ref Expression
disj  |-  ( ( A  i^i  B )  =  (/)  <->  A. x  e.  A  -.  x  e.  B
)
Distinct variable groups:    x, A    x, B

Proof of Theorem disj
StepHypRef Expression
1 df-in 3072 . . . 4  |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B ) }
21eqeq1i 2145 . . 3  |-  ( ( A  i^i  B )  =  (/)  <->  { x  |  ( x  e.  A  /\  x  e.  B ) }  =  (/) )
3 abeq1 2247 . . 3  |-  ( { x  |  ( x  e.  A  /\  x  e.  B ) }  =  (/)  <->  A. x ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  (/) ) )
4 imnan 679 . . . . 5  |-  ( ( x  e.  A  ->  -.  x  e.  B
)  <->  -.  ( x  e.  A  /\  x  e.  B ) )
5 noel 3362 . . . . . 6  |-  -.  x  e.  (/)
65nbn 688 . . . . 5  |-  ( -.  ( x  e.  A  /\  x  e.  B
)  <->  ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  (/) ) )
74, 6bitr2i 184 . . . 4  |-  ( ( ( x  e.  A  /\  x  e.  B
)  <->  x  e.  (/) )  <->  ( x  e.  A  ->  -.  x  e.  B ) )
87albii 1446 . . 3  |-  ( A. x ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  (/) )  <->  A. x ( x  e.  A  ->  -.  x  e.  B )
)
92, 3, 83bitri 205 . 2  |-  ( ( A  i^i  B )  =  (/)  <->  A. x ( x  e.  A  ->  -.  x  e.  B )
)
10 df-ral 2419 . 2  |-  ( A. x  e.  A  -.  x  e.  B  <->  A. x
( x  e.  A  ->  -.  x  e.  B
) )
119, 10bitr4i 186 1  |-  ( ( A  i^i  B )  =  (/)  <->  A. x  e.  A  -.  x  e.  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1329    = wceq 1331    e. wcel 1480   {cab 2123   A.wral 2414    i^i cin 3065   (/)c0 3358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-v 2683  df-dif 3068  df-in 3072  df-nul 3359
This theorem is referenced by:  disjr  3407  disj1  3408  disjne  3411  f0rn0  5312  renfdisj  7817  fvinim0ffz  10011  fxnn0nninf  10204  exmidunben  11928  dedekindeulemuub  12753  dedekindeulemlu  12757  dedekindicclemuub  12762  dedekindicclemlu  12766  ivthinclemdisj  12776  exmidsbthrlem  13206
  Copyright terms: Public domain W3C validator