| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reldm0 | Unicode version | ||
| Description: A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.) |
| Ref | Expression |
|---|---|
| reldm0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rel0 4799 |
. . 3
| |
| 2 | eqrel 4763 |
. . 3
| |
| 3 | 1, 2 | mpan2 425 |
. 2
|
| 4 | eq0 3478 |
. . 3
| |
| 5 | alnex 1521 |
. . . . . 6
| |
| 6 | vex 2774 |
. . . . . . 7
| |
| 7 | 6 | eldm2 4875 |
. . . . . 6
|
| 8 | 5, 7 | xchbinxr 684 |
. . . . 5
|
| 9 | noel 3463 |
. . . . . . 7
| |
| 10 | 9 | nbn 700 |
. . . . . 6
|
| 11 | 10 | albii 1492 |
. . . . 5
|
| 12 | 8, 11 | bitr3i 186 |
. . . 4
|
| 13 | 12 | albii 1492 |
. . 3
|
| 14 | 4, 13 | bitr2i 185 |
. 2
|
| 15 | 3, 14 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4680 df-rel 4681 df-dm 4684 |
| This theorem is referenced by: relrn0 4939 fnresdisj 5385 fn0 5394 fsnunfv 5784 setsresg 12812 metn0 14792 |
| Copyright terms: Public domain | W3C validator |