ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldm0 Unicode version

Theorem reldm0 4829
Description: A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
reldm0  |-  ( Rel 
A  ->  ( A  =  (/)  <->  dom  A  =  (/) ) )

Proof of Theorem reldm0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 4736 . . 3  |-  Rel  (/)
2 eqrel 4700 . . 3  |-  ( ( Rel  A  /\  Rel  (/) )  ->  ( A  =  (/)  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  (/) ) ) )
31, 2mpan2 423 . 2  |-  ( Rel 
A  ->  ( A  =  (/)  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  (/) ) ) )
4 eq0 3433 . . 3  |-  ( dom 
A  =  (/)  <->  A. x  -.  x  e.  dom  A )
5 alnex 1492 . . . . . 6  |-  ( A. y  -.  <. x ,  y
>.  e.  A  <->  -.  E. y <. x ,  y >.  e.  A )
6 vex 2733 . . . . . . 7  |-  x  e. 
_V
76eldm2 4809 . . . . . 6  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
85, 7xchbinxr 678 . . . . 5  |-  ( A. y  -.  <. x ,  y
>.  e.  A  <->  -.  x  e.  dom  A )
9 noel 3418 . . . . . . 7  |-  -.  <. x ,  y >.  e.  (/)
109nbn 694 . . . . . 6  |-  ( -. 
<. x ,  y >.  e.  A  <->  ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (/) ) )
1110albii 1463 . . . . 5  |-  ( A. y  -.  <. x ,  y
>.  e.  A  <->  A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  (/) ) )
128, 11bitr3i 185 . . . 4  |-  ( -.  x  e.  dom  A  <->  A. y ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (/) ) )
1312albii 1463 . . 3  |-  ( A. x  -.  x  e.  dom  A  <->  A. x A. y (
<. x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  (/) ) )
144, 13bitr2i 184 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  (/) )  <->  dom  A  =  (/) )
153, 14bitrdi 195 1  |-  ( Rel 
A  ->  ( A  =  (/)  <->  dom  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141   (/)c0 3414   <.cop 3586   dom cdm 4611   Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-dm 4621
This theorem is referenced by:  relrn0  4873  fnresdisj  5308  fn0  5317  fsnunfv  5697  setsresg  12454  metn0  13172
  Copyright terms: Public domain W3C validator