| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reldm0 | Unicode version | ||
| Description: A relation is empty iff its domain is empty. For a similar theorem for whether the relation and domain are inhabited, see reldmm 4941. (Contributed by NM, 15-Sep-2004.) |
| Ref | Expression |
|---|---|
| reldm0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rel0 4843 |
. . 3
| |
| 2 | eqrel 4807 |
. . 3
| |
| 3 | 1, 2 | mpan2 425 |
. 2
|
| 4 | eq0 3510 |
. . 3
| |
| 5 | alnex 1545 |
. . . . . 6
| |
| 6 | vex 2802 |
. . . . . . 7
| |
| 7 | 6 | eldm2 4920 |
. . . . . 6
|
| 8 | 5, 7 | xchbinxr 687 |
. . . . 5
|
| 9 | noel 3495 |
. . . . . . 7
| |
| 10 | 9 | nbn 704 |
. . . . . 6
|
| 11 | 10 | albii 1516 |
. . . . 5
|
| 12 | 8, 11 | bitr3i 186 |
. . . 4
|
| 13 | 12 | albii 1516 |
. . 3
|
| 14 | 4, 13 | bitr2i 185 |
. 2
|
| 15 | 3, 14 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-dm 4728 |
| This theorem is referenced by: relrn0 4985 fnresdisj 5432 fn0 5442 fsnunfv 5839 swrd0g 11187 setsresg 13065 metn0 15046 |
| Copyright terms: Public domain | W3C validator |