Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reldm0 | Unicode version |
Description: A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.) |
Ref | Expression |
---|---|
reldm0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rel0 4734 | . . 3 | |
2 | eqrel 4698 | . . 3 | |
3 | 1, 2 | mpan2 423 | . 2 |
4 | eq0 3432 | . . 3 | |
5 | alnex 1492 | . . . . . 6 | |
6 | vex 2733 | . . . . . . 7 | |
7 | 6 | eldm2 4807 | . . . . . 6 |
8 | 5, 7 | xchbinxr 678 | . . . . 5 |
9 | noel 3418 | . . . . . . 7 | |
10 | 9 | nbn 694 | . . . . . 6 |
11 | 10 | albii 1463 | . . . . 5 |
12 | 8, 11 | bitr3i 185 | . . . 4 |
13 | 12 | albii 1463 | . . 3 |
14 | 4, 13 | bitr2i 184 | . 2 |
15 | 3, 14 | bitrdi 195 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wal 1346 wceq 1348 wex 1485 wcel 2141 c0 3414 cop 3584 cdm 4609 wrel 4614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-opab 4049 df-xp 4615 df-rel 4616 df-dm 4619 |
This theorem is referenced by: relrn0 4871 fnresdisj 5306 fn0 5315 fsnunfv 5694 setsresg 12441 metn0 13093 |
Copyright terms: Public domain | W3C validator |