| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reldm0 | Unicode version | ||
| Description: A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.) |
| Ref | Expression |
|---|---|
| reldm0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rel0 4808 |
. . 3
| |
| 2 | eqrel 4772 |
. . 3
| |
| 3 | 1, 2 | mpan2 425 |
. 2
|
| 4 | eq0 3483 |
. . 3
| |
| 5 | alnex 1523 |
. . . . . 6
| |
| 6 | vex 2776 |
. . . . . . 7
| |
| 7 | 6 | eldm2 4885 |
. . . . . 6
|
| 8 | 5, 7 | xchbinxr 685 |
. . . . 5
|
| 9 | noel 3468 |
. . . . . . 7
| |
| 10 | 9 | nbn 701 |
. . . . . 6
|
| 11 | 10 | albii 1494 |
. . . . 5
|
| 12 | 8, 11 | bitr3i 186 |
. . . 4
|
| 13 | 12 | albii 1494 |
. . 3
|
| 14 | 4, 13 | bitr2i 185 |
. 2
|
| 15 | 3, 14 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-xp 4689 df-rel 4690 df-dm 4693 |
| This theorem is referenced by: relrn0 4949 fnresdisj 5395 fn0 5405 fsnunfv 5798 swrd0g 11136 setsresg 12945 metn0 14925 |
| Copyright terms: Public domain | W3C validator |