ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldm0 Unicode version

Theorem reldm0 4905
Description: A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
reldm0  |-  ( Rel 
A  ->  ( A  =  (/)  <->  dom  A  =  (/) ) )

Proof of Theorem reldm0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 4808 . . 3  |-  Rel  (/)
2 eqrel 4772 . . 3  |-  ( ( Rel  A  /\  Rel  (/) )  ->  ( A  =  (/)  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  (/) ) ) )
31, 2mpan2 425 . 2  |-  ( Rel 
A  ->  ( A  =  (/)  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  (/) ) ) )
4 eq0 3483 . . 3  |-  ( dom 
A  =  (/)  <->  A. x  -.  x  e.  dom  A )
5 alnex 1523 . . . . . 6  |-  ( A. y  -.  <. x ,  y
>.  e.  A  <->  -.  E. y <. x ,  y >.  e.  A )
6 vex 2776 . . . . . . 7  |-  x  e. 
_V
76eldm2 4885 . . . . . 6  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
85, 7xchbinxr 685 . . . . 5  |-  ( A. y  -.  <. x ,  y
>.  e.  A  <->  -.  x  e.  dom  A )
9 noel 3468 . . . . . . 7  |-  -.  <. x ,  y >.  e.  (/)
109nbn 701 . . . . . 6  |-  ( -. 
<. x ,  y >.  e.  A  <->  ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (/) ) )
1110albii 1494 . . . . 5  |-  ( A. y  -.  <. x ,  y
>.  e.  A  <->  A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  (/) ) )
128, 11bitr3i 186 . . . 4  |-  ( -.  x  e.  dom  A  <->  A. y ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (/) ) )
1312albii 1494 . . 3  |-  ( A. x  -.  x  e.  dom  A  <->  A. x A. y (
<. x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  (/) ) )
144, 13bitr2i 185 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  (/) )  <->  dom  A  =  (/) )
153, 14bitrdi 196 1  |-  ( Rel 
A  ->  ( A  =  (/)  <->  dom  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1516    e. wcel 2177   (/)c0 3464   <.cop 3641   dom cdm 4683   Rel wrel 4688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-dm 4693
This theorem is referenced by:  relrn0  4949  fnresdisj  5395  fn0  5405  fsnunfv  5798  swrd0g  11136  setsresg  12945  metn0  14925
  Copyright terms: Public domain W3C validator