Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dm0rn0 | Unicode version |
Description: An empty domain implies an empty range. For a similar theorem for whether the domain and range are inhabited, see dmmrnm 4823. (Contributed by NM, 21-May-1998.) |
Ref | Expression |
---|---|
dm0rn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex 1487 | . . . . . 6 | |
2 | excom 1652 | . . . . . 6 | |
3 | 1, 2 | xchbinx 672 | . . . . 5 |
4 | alnex 1487 | . . . . 5 | |
5 | 3, 4 | bitr4i 186 | . . . 4 |
6 | noel 3413 | . . . . . 6 | |
7 | 6 | nbn 689 | . . . . 5 |
8 | 7 | albii 1458 | . . . 4 |
9 | noel 3413 | . . . . . 6 | |
10 | 9 | nbn 689 | . . . . 5 |
11 | 10 | albii 1458 | . . . 4 |
12 | 5, 8, 11 | 3bitr3i 209 | . . 3 |
13 | abeq1 2276 | . . 3 | |
14 | abeq1 2276 | . . 3 | |
15 | 12, 13, 14 | 3bitr4i 211 | . 2 |
16 | df-dm 4614 | . . 3 | |
17 | 16 | eqeq1i 2173 | . 2 |
18 | dfrn2 4792 | . . 3 | |
19 | 18 | eqeq1i 2173 | . 2 |
20 | 15, 17, 19 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wb 104 wal 1341 wceq 1343 wex 1480 wcel 2136 cab 2151 c0 3409 class class class wbr 3982 cdm 4604 crn 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-cnv 4612 df-dm 4614 df-rn 4615 |
This theorem is referenced by: rn0 4860 relrn0 4866 imadisj 4966 ndmima 4981 f00 5379 f0rn0 5382 2nd0 6113 map0b 6653 |
Copyright terms: Public domain | W3C validator |