| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dm0rn0 | Unicode version | ||
| Description: An empty domain implies an empty range. For a similar theorem for whether the domain and range are inhabited, see dmmrnm 4897. (Contributed by NM, 21-May-1998.) |
| Ref | Expression |
|---|---|
| dm0rn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex 1522 |
. . . . . 6
| |
| 2 | excom 1687 |
. . . . . 6
| |
| 3 | 1, 2 | xchbinx 684 |
. . . . 5
|
| 4 | alnex 1522 |
. . . . 5
| |
| 5 | 3, 4 | bitr4i 187 |
. . . 4
|
| 6 | noel 3464 |
. . . . . 6
| |
| 7 | 6 | nbn 701 |
. . . . 5
|
| 8 | 7 | albii 1493 |
. . . 4
|
| 9 | noel 3464 |
. . . . . 6
| |
| 10 | 9 | nbn 701 |
. . . . 5
|
| 11 | 10 | albii 1493 |
. . . 4
|
| 12 | 5, 8, 11 | 3bitr3i 210 |
. . 3
|
| 13 | abeq1 2315 |
. . 3
| |
| 14 | abeq1 2315 |
. . 3
| |
| 15 | 12, 13, 14 | 3bitr4i 212 |
. 2
|
| 16 | df-dm 4685 |
. . 3
| |
| 17 | 16 | eqeq1i 2213 |
. 2
|
| 18 | dfrn2 4866 |
. . 3
| |
| 19 | 18 | eqeq1i 2213 |
. 2
|
| 20 | 15, 17, 19 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-cnv 4683 df-dm 4685 df-rn 4686 |
| This theorem is referenced by: rn0 4934 relrn0 4940 imadisj 5044 ndmima 5059 f00 5467 f0rn0 5470 2nd0 6231 map0b 6774 |
| Copyright terms: Public domain | W3C validator |