| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dm0rn0 | Unicode version | ||
| Description: An empty domain implies an empty range. For a similar theorem for whether the domain and range are inhabited, see dmmrnm 4886. (Contributed by NM, 21-May-1998.) |
| Ref | Expression |
|---|---|
| dm0rn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex 1513 |
. . . . . 6
| |
| 2 | excom 1678 |
. . . . . 6
| |
| 3 | 1, 2 | xchbinx 683 |
. . . . 5
|
| 4 | alnex 1513 |
. . . . 5
| |
| 5 | 3, 4 | bitr4i 187 |
. . . 4
|
| 6 | noel 3455 |
. . . . . 6
| |
| 7 | 6 | nbn 700 |
. . . . 5
|
| 8 | 7 | albii 1484 |
. . . 4
|
| 9 | noel 3455 |
. . . . . 6
| |
| 10 | 9 | nbn 700 |
. . . . 5
|
| 11 | 10 | albii 1484 |
. . . 4
|
| 12 | 5, 8, 11 | 3bitr3i 210 |
. . 3
|
| 13 | abeq1 2306 |
. . 3
| |
| 14 | abeq1 2306 |
. . 3
| |
| 15 | 12, 13, 14 | 3bitr4i 212 |
. 2
|
| 16 | df-dm 4674 |
. . 3
| |
| 17 | 16 | eqeq1i 2204 |
. 2
|
| 18 | dfrn2 4855 |
. . 3
| |
| 19 | 18 | eqeq1i 2204 |
. 2
|
| 20 | 15, 17, 19 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-cnv 4672 df-dm 4674 df-rn 4675 |
| This theorem is referenced by: rn0 4923 relrn0 4929 imadisj 5032 ndmima 5047 f00 5452 f0rn0 5455 2nd0 6212 map0b 6755 |
| Copyright terms: Public domain | W3C validator |