ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dm0rn0 Unicode version

Theorem dm0rn0 4828
Description: An empty domain implies an empty range. For a similar theorem for whether the domain and range are inhabited, see dmmrnm 4830. (Contributed by NM, 21-May-1998.)
Assertion
Ref Expression
dm0rn0  |-  ( dom 
A  =  (/)  <->  ran  A  =  (/) )

Proof of Theorem dm0rn0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alnex 1492 . . . . . 6  |-  ( A. x  -.  E. y  x A y  <->  -.  E. x E. y  x A
y )
2 excom 1657 . . . . . 6  |-  ( E. x E. y  x A y  <->  E. y E. x  x A
y )
31, 2xchbinx 677 . . . . 5  |-  ( A. x  -.  E. y  x A y  <->  -.  E. y E. x  x A
y )
4 alnex 1492 . . . . 5  |-  ( A. y  -.  E. x  x A y  <->  -.  E. y E. x  x A
y )
53, 4bitr4i 186 . . . 4  |-  ( A. x  -.  E. y  x A y  <->  A. y  -.  E. x  x A y )
6 noel 3418 . . . . . 6  |-  -.  x  e.  (/)
76nbn 694 . . . . 5  |-  ( -. 
E. y  x A y  <->  ( E. y  x A y  <->  x  e.  (/) ) )
87albii 1463 . . . 4  |-  ( A. x  -.  E. y  x A y  <->  A. x
( E. y  x A y  <->  x  e.  (/) ) )
9 noel 3418 . . . . . 6  |-  -.  y  e.  (/)
109nbn 694 . . . . 5  |-  ( -. 
E. x  x A y  <->  ( E. x  x A y  <->  y  e.  (/) ) )
1110albii 1463 . . . 4  |-  ( A. y  -.  E. x  x A y  <->  A. y
( E. x  x A y  <->  y  e.  (/) ) )
125, 8, 113bitr3i 209 . . 3  |-  ( A. x ( E. y  x A y  <->  x  e.  (/) )  <->  A. y ( E. x  x A y  <-> 
y  e.  (/) ) )
13 abeq1 2280 . . 3  |-  ( { x  |  E. y  x A y }  =  (/)  <->  A. x ( E. y  x A y  <->  x  e.  (/) ) )
14 abeq1 2280 . . 3  |-  ( { y  |  E. x  x A y }  =  (/)  <->  A. y ( E. x  x A y  <->  y  e.  (/) ) )
1512, 13, 143bitr4i 211 . 2  |-  ( { x  |  E. y  x A y }  =  (/)  <->  { y  |  E. x  x A y }  =  (/) )
16 df-dm 4621 . . 3  |-  dom  A  =  { x  |  E. y  x A y }
1716eqeq1i 2178 . 2  |-  ( dom 
A  =  (/)  <->  { x  |  E. y  x A y }  =  (/) )
18 dfrn2 4799 . . 3  |-  ran  A  =  { y  |  E. x  x A y }
1918eqeq1i 2178 . 2  |-  ( ran 
A  =  (/)  <->  { y  |  E. x  x A y }  =  (/) )
2015, 17, 193bitr4i 211 1  |-  ( dom 
A  =  (/)  <->  ran  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141   {cab 2156   (/)c0 3414   class class class wbr 3989   dom cdm 4611   ran crn 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by:  rn0  4867  relrn0  4873  imadisj  4973  ndmima  4988  f00  5389  f0rn0  5392  2nd0  6124  map0b  6665
  Copyright terms: Public domain W3C validator