| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dm0rn0 | Unicode version | ||
| Description: An empty domain implies an empty range. For a similar theorem for whether the domain and range are inhabited, see dmmrnm 4916. (Contributed by NM, 21-May-1998.) |
| Ref | Expression |
|---|---|
| dm0rn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex 1523 |
. . . . . 6
| |
| 2 | excom 1688 |
. . . . . 6
| |
| 3 | 1, 2 | xchbinx 684 |
. . . . 5
|
| 4 | alnex 1523 |
. . . . 5
| |
| 5 | 3, 4 | bitr4i 187 |
. . . 4
|
| 6 | noel 3472 |
. . . . . 6
| |
| 7 | 6 | nbn 701 |
. . . . 5
|
| 8 | 7 | albii 1494 |
. . . 4
|
| 9 | noel 3472 |
. . . . . 6
| |
| 10 | 9 | nbn 701 |
. . . . 5
|
| 11 | 10 | albii 1494 |
. . . 4
|
| 12 | 5, 8, 11 | 3bitr3i 210 |
. . 3
|
| 13 | abeq1 2317 |
. . 3
| |
| 14 | abeq1 2317 |
. . 3
| |
| 15 | 12, 13, 14 | 3bitr4i 212 |
. 2
|
| 16 | df-dm 4703 |
. . 3
| |
| 17 | 16 | eqeq1i 2215 |
. 2
|
| 18 | dfrn2 4884 |
. . 3
| |
| 19 | 18 | eqeq1i 2215 |
. 2
|
| 20 | 15, 17, 19 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-cnv 4701 df-dm 4703 df-rn 4704 |
| This theorem is referenced by: rn0 4953 relrn0 4959 imadisj 5063 ndmima 5078 f00 5489 f0rn0 5492 2nd0 6254 map0b 6797 |
| Copyright terms: Public domain | W3C validator |