| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dm0rn0 | Unicode version | ||
| Description: An empty domain implies an empty range. For a similar theorem for whether the domain and range are inhabited, see dmmrnm 4942. (Contributed by NM, 21-May-1998.) |
| Ref | Expression |
|---|---|
| dm0rn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex 1545 |
. . . . . 6
| |
| 2 | excom 1710 |
. . . . . 6
| |
| 3 | 1, 2 | xchbinx 686 |
. . . . 5
|
| 4 | alnex 1545 |
. . . . 5
| |
| 5 | 3, 4 | bitr4i 187 |
. . . 4
|
| 6 | noel 3495 |
. . . . . 6
| |
| 7 | 6 | nbn 704 |
. . . . 5
|
| 8 | 7 | albii 1516 |
. . . 4
|
| 9 | noel 3495 |
. . . . . 6
| |
| 10 | 9 | nbn 704 |
. . . . 5
|
| 11 | 10 | albii 1516 |
. . . 4
|
| 12 | 5, 8, 11 | 3bitr3i 210 |
. . 3
|
| 13 | abeq1 2339 |
. . 3
| |
| 14 | abeq1 2339 |
. . 3
| |
| 15 | 12, 13, 14 | 3bitr4i 212 |
. 2
|
| 16 | df-dm 4728 |
. . 3
| |
| 17 | 16 | eqeq1i 2237 |
. 2
|
| 18 | dfrn2 4909 |
. . 3
| |
| 19 | 18 | eqeq1i 2237 |
. 2
|
| 20 | 15, 17, 19 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-cnv 4726 df-dm 4728 df-rn 4729 |
| This theorem is referenced by: rn0 4979 relrn0 4985 imadisj 5089 ndmima 5104 f00 5516 f0rn0 5519 2nd0 6289 map0b 6832 |
| Copyright terms: Public domain | W3C validator |