| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nebidc | Unicode version | ||
| Description: Contraposition law for inequality. (Contributed by Jim Kingdon, 19-May-2018.) |
| Ref | Expression |
|---|---|
| nebidc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . 4
| |
| 2 | 1 | necon3bid 2408 |
. . 3
|
| 3 | id 19 |
. . . . . . . 8
| |
| 4 | 3 | a1d 22 |
. . . . . . 7
|
| 5 | 4 | a1d 22 |
. . . . . 6
|
| 6 | 5 | necon4biddc 2442 |
. . . . 5
|
| 7 | 6 | com3l 81 |
. . . 4
|
| 8 | 7 | imp 124 |
. . 3
|
| 9 | 2, 8 | impbid2 143 |
. 2
|
| 10 | 9 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-ne 2368 |
| This theorem is referenced by: rpexp 12331 |
| Copyright terms: Public domain | W3C validator |