Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nebidc | Unicode version |
Description: Contraposition law for inequality. (Contributed by Jim Kingdon, 19-May-2018.) |
Ref | Expression |
---|---|
nebidc | DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 | |
2 | 1 | necon3bid 2381 | . . 3 |
3 | id 19 | . . . . . . . 8 | |
4 | 3 | a1d 22 | . . . . . . 7 DECID |
5 | 4 | a1d 22 | . . . . . 6 DECID DECID |
6 | 5 | necon4biddc 2415 | . . . . 5 DECID DECID |
7 | 6 | com3l 81 | . . . 4 DECID DECID |
8 | 7 | imp 123 | . . 3 DECID DECID |
9 | 2, 8 | impbid2 142 | . 2 DECID DECID |
10 | 9 | ex 114 | 1 DECID DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 DECID wdc 829 wceq 1348 wne 2340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-ne 2341 |
This theorem is referenced by: rpexp 12107 |
Copyright terms: Public domain | W3C validator |