ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpexp Unicode version

Theorem rpexp 12550
Description: If two numbers  A and  B are relatively prime, then they are still relatively prime if raised to a power. (Contributed by Mario Carneiro, 24-Feb-2014.)
Assertion
Ref Expression
rpexp  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  ->  (
( ( A ^ N )  gcd  B
)  =  1  <->  ( A  gcd  B )  =  1 ) )

Proof of Theorem rpexp
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 0exp 10741 . . . . . 6  |-  ( N  e.  NN  ->  (
0 ^ N )  =  0 )
21oveq1d 5972 . . . . 5  |-  ( N  e.  NN  ->  (
( 0 ^ N
)  gcd  0 )  =  ( 0  gcd  0 ) )
32eqeq1d 2215 . . . 4  |-  ( N  e.  NN  ->  (
( ( 0 ^ N )  gcd  0
)  =  1  <->  (
0  gcd  0 )  =  1 ) )
4 oveq1 5964 . . . . . . 7  |-  ( A  =  0  ->  ( A ^ N )  =  ( 0 ^ N
) )
5 oveq12 5966 . . . . . . 7  |-  ( ( ( A ^ N
)  =  ( 0 ^ N )  /\  B  =  0 )  ->  ( ( A ^ N )  gcd 
B )  =  ( ( 0 ^ N
)  gcd  0 ) )
64, 5sylan 283 . . . . . 6  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( A ^ N )  gcd 
B )  =  ( ( 0 ^ N
)  gcd  0 ) )
76eqeq1d 2215 . . . . 5  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( ( A ^ N )  gcd  B )  =  1  <->  ( ( 0 ^ N )  gcd  0 )  =  1 ) )
8 oveq12 5966 . . . . . 6  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A  gcd  B )  =  ( 0  gcd  0 ) )
98eqeq1d 2215 . . . . 5  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( A  gcd  B )  =  1  <->  ( 0  gcd  0 )  =  1 ) )
107, 9bibi12d 235 . . . 4  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( ( ( A ^ N
)  gcd  B )  =  1  <->  ( A  gcd  B )  =  1 )  <->  ( ( ( 0 ^ N )  gcd  0 )  =  1  <->  ( 0  gcd  0 )  =  1 ) ) )
113, 10syl5ibrcom 157 . . 3  |-  ( N  e.  NN  ->  (
( A  =  0  /\  B  =  0 )  ->  ( (
( A ^ N
)  gcd  B )  =  1  <->  ( A  gcd  B )  =  1 ) ) )
12113ad2ant3 1023 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  ->  (
( A  =  0  /\  B  =  0 )  ->  ( (
( A ^ N
)  gcd  B )  =  1  <->  ( A  gcd  B )  =  1 ) ) )
13 exprmfct 12535 . . . . . . 7  |-  ( ( ( A ^ N
)  gcd  B )  e.  ( ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  ( ( A ^ N )  gcd 
B ) )
14 simpl1 1003 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  A  e.  ZZ )
15 simpl3 1005 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  N  e.  NN )
1615nnnn0d 9368 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  N  e.  NN0 )
17 zexpcl 10721 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  ZZ )
1814, 16, 17syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( A ^ N
)  e.  ZZ )
1918adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  ( A ^ N )  e.  ZZ )
20 simpl2 1004 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  B  e.  ZZ )
2120adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  B  e.  ZZ )
22 gcddvds 12359 . . . . . . . . . . . . . . 15  |-  ( ( ( A ^ N
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( A ^ N )  gcd 
B )  ||  ( A ^ N )  /\  ( ( A ^ N )  gcd  B
)  ||  B )
)
2319, 21, 22syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
( ( A ^ N )  gcd  B
)  ||  ( A ^ N )  /\  (
( A ^ N
)  gcd  B )  ||  B ) )
2423simpld 112 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
( A ^ N
)  gcd  B )  ||  ( A ^ N
) )
25 prmz 12508 . . . . . . . . . . . . . . 15  |-  ( p  e.  Prime  ->  p  e.  ZZ )
2625adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  p  e.  ZZ )
27 simpr 110 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  -.  ( A  =  0  /\  B  =  0 ) )
2814zcnd 9516 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  A  e.  CC )
29 expeq0 10737 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( ( A ^ N )  =  0  <-> 
A  =  0 ) )
3028, 15, 29syl2anc 411 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( A ^ N )  =  0  <-> 
A  =  0 ) )
3130anbi1d 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( ( A ^ N )  =  0  /\  B  =  0 )  <->  ( A  =  0  /\  B  =  0 ) ) )
3227, 31mtbird 675 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  -.  ( ( A ^ N )  =  0  /\  B  =  0 ) )
33 gcdn0cl 12358 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A ^ N )  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( ( A ^ N )  =  0  /\  B  =  0 ) )  ->  ( ( A ^ N )  gcd 
B )  e.  NN )
3418, 20, 32, 33syl21anc 1249 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( A ^ N )  gcd  B
)  e.  NN )
3534nnzd 9514 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( A ^ N )  gcd  B
)  e.  ZZ )
3635adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
( A ^ N
)  gcd  B )  e.  ZZ )
37 dvdstr 12214 . . . . . . . . . . . . . 14  |-  ( ( p  e.  ZZ  /\  ( ( A ^ N )  gcd  B
)  e.  ZZ  /\  ( A ^ N )  e.  ZZ )  -> 
( ( p  ||  ( ( A ^ N )  gcd  B
)  /\  ( ( A ^ N )  gcd 
B )  ||  ( A ^ N ) )  ->  p  ||  ( A ^ N ) ) )
3826, 36, 19, 37syl3anc 1250 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
( p  ||  (
( A ^ N
)  gcd  B )  /\  ( ( A ^ N )  gcd  B
)  ||  ( A ^ N ) )  ->  p  ||  ( A ^ N ) ) )
3924, 38mpan2d 428 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
p  ||  ( ( A ^ N )  gcd 
B )  ->  p  ||  ( A ^ N
) ) )
40 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  p  e.  Prime )
41 simpll1 1039 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  A  e.  ZZ )
4215adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  N  e.  NN )
43 prmdvdsexp 12545 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  A  e.  ZZ  /\  N  e.  NN )  ->  (
p  ||  ( A ^ N )  <->  p  ||  A
) )
4440, 41, 42, 43syl3anc 1250 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
p  ||  ( A ^ N )  <->  p  ||  A
) )
4539, 44sylibd 149 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
p  ||  ( ( A ^ N )  gcd 
B )  ->  p  ||  A ) )
4623simprd 114 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
( A ^ N
)  gcd  B )  ||  B )
47 dvdstr 12214 . . . . . . . . . . . . 13  |-  ( ( p  e.  ZZ  /\  ( ( A ^ N )  gcd  B
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( p  ||  ( ( A ^ N )  gcd  B
)  /\  ( ( A ^ N )  gcd 
B )  ||  B
)  ->  p  ||  B
) )
4826, 36, 21, 47syl3anc 1250 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
( p  ||  (
( A ^ N
)  gcd  B )  /\  ( ( A ^ N )  gcd  B
)  ||  B )  ->  p  ||  B ) )
4946, 48mpan2d 428 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
p  ||  ( ( A ^ N )  gcd 
B )  ->  p  ||  B ) )
5045, 49jcad 307 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
p  ||  ( ( A ^ N )  gcd 
B )  ->  (
p  ||  A  /\  p  ||  B ) ) )
51 dvdsgcd 12408 . . . . . . . . . . 11  |-  ( ( p  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( p  ||  A  /\  p  ||  B )  ->  p  ||  ( A  gcd  B ) ) )
5226, 41, 21, 51syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
( p  ||  A  /\  p  ||  B )  ->  p  ||  ( A  gcd  B ) ) )
53 nprmdvds1 12537 . . . . . . . . . . . . 13  |-  ( p  e.  Prime  ->  -.  p  ||  1 )
54 breq2 4055 . . . . . . . . . . . . . 14  |-  ( ( A  gcd  B )  =  1  ->  (
p  ||  ( A  gcd  B )  <->  p  ||  1
) )
5554notbid 669 . . . . . . . . . . . . 13  |-  ( ( A  gcd  B )  =  1  ->  ( -.  p  ||  ( A  gcd  B )  <->  -.  p  ||  1 ) )
5653, 55syl5ibrcom 157 . . . . . . . . . . . 12  |-  ( p  e.  Prime  ->  ( ( A  gcd  B )  =  1  ->  -.  p  ||  ( A  gcd  B ) ) )
5756necon2ad 2434 . . . . . . . . . . 11  |-  ( p  e.  Prime  ->  ( p 
||  ( A  gcd  B )  ->  ( A  gcd  B )  =/=  1
) )
5857adantl 277 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
p  ||  ( A  gcd  B )  ->  ( A  gcd  B )  =/=  1 ) )
5950, 52, 583syld 57 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
p  ||  ( ( A ^ N )  gcd 
B )  ->  ( A  gcd  B )  =/=  1 ) )
6059rexlimdva 2624 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( E. p  e. 
Prime  p  ||  ( ( A ^ N )  gcd  B )  -> 
( A  gcd  B
)  =/=  1 ) )
61 gcdn0cl 12358 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
62613adantl3 1158 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( A  gcd  B
)  e.  NN )
63 eluz2b3 9745 . . . . . . . . . 10  |-  ( ( A  gcd  B )  e.  ( ZZ>= `  2
)  <->  ( ( A  gcd  B )  e.  NN  /\  ( A  gcd  B )  =/=  1 ) )
6463baib 921 . . . . . . . . 9  |-  ( ( A  gcd  B )  e.  NN  ->  (
( A  gcd  B
)  e.  ( ZZ>= ` 
2 )  <->  ( A  gcd  B )  =/=  1
) )
6562, 64syl 14 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( A  gcd  B )  e.  ( ZZ>= ` 
2 )  <->  ( A  gcd  B )  =/=  1
) )
6660, 65sylibrd 169 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( E. p  e. 
Prime  p  ||  ( ( A ^ N )  gcd  B )  -> 
( A  gcd  B
)  e.  ( ZZ>= ` 
2 ) ) )
6713, 66syl5 32 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( ( A ^ N )  gcd 
B )  e.  (
ZZ>= `  2 )  -> 
( A  gcd  B
)  e.  ( ZZ>= ` 
2 ) ) )
68 exprmfct 12535 . . . . . . 7  |-  ( ( A  gcd  B )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  ( A  gcd  B ) )
69 gcddvds 12359 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
7041, 21, 69syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
( A  gcd  B
)  ||  A  /\  ( A  gcd  B ) 
||  B ) )
7170simpld 112 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  ( A  gcd  B )  ||  A )
72 iddvdsexp 12201 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  A  ||  ( A ^ N ) )
7341, 42, 72syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  A  ||  ( A ^ N
) )
7462nnzd 9514 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( A  gcd  B
)  e.  ZZ )
7574adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  ( A  gcd  B )  e.  ZZ )
76 dvdstr 12214 . . . . . . . . . . . . . 14  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ  /\  ( A ^ N )  e.  ZZ )  ->  (
( ( A  gcd  B )  ||  A  /\  A  ||  ( A ^ N ) )  -> 
( A  gcd  B
)  ||  ( A ^ N ) ) )
7775, 41, 19, 76syl3anc 1250 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
( ( A  gcd  B )  ||  A  /\  A  ||  ( A ^ N ) )  -> 
( A  gcd  B
)  ||  ( A ^ N ) ) )
7871, 73, 77mp2and 433 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  ( A  gcd  B )  ||  ( A ^ N ) )
79 dvdstr 12214 . . . . . . . . . . . . 13  |-  ( ( p  e.  ZZ  /\  ( A  gcd  B )  e.  ZZ  /\  ( A ^ N )  e.  ZZ )  ->  (
( p  ||  ( A  gcd  B )  /\  ( A  gcd  B ) 
||  ( A ^ N ) )  ->  p  ||  ( A ^ N ) ) )
8026, 75, 19, 79syl3anc 1250 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
( p  ||  ( A  gcd  B )  /\  ( A  gcd  B ) 
||  ( A ^ N ) )  ->  p  ||  ( A ^ N ) ) )
8178, 80mpan2d 428 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
p  ||  ( A  gcd  B )  ->  p  ||  ( A ^ N
) ) )
8270simprd 114 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  ( A  gcd  B )  ||  B )
83 dvdstr 12214 . . . . . . . . . . . . 13  |-  ( ( p  e.  ZZ  /\  ( A  gcd  B )  e.  ZZ  /\  B  e.  ZZ )  ->  (
( p  ||  ( A  gcd  B )  /\  ( A  gcd  B ) 
||  B )  ->  p  ||  B ) )
8426, 75, 21, 83syl3anc 1250 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
( p  ||  ( A  gcd  B )  /\  ( A  gcd  B ) 
||  B )  ->  p  ||  B ) )
8582, 84mpan2d 428 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
p  ||  ( A  gcd  B )  ->  p  ||  B ) )
8681, 85jcad 307 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
p  ||  ( A  gcd  B )  ->  (
p  ||  ( A ^ N )  /\  p  ||  B ) ) )
87 dvdsgcd 12408 . . . . . . . . . . 11  |-  ( ( p  e.  ZZ  /\  ( A ^ N )  e.  ZZ  /\  B  e.  ZZ )  ->  (
( p  ||  ( A ^ N )  /\  p  ||  B )  ->  p  ||  ( ( A ^ N )  gcd 
B ) ) )
8826, 19, 21, 87syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
( p  ||  ( A ^ N )  /\  p  ||  B )  ->  p  ||  ( ( A ^ N )  gcd 
B ) ) )
89 breq2 4055 . . . . . . . . . . . . . 14  |-  ( ( ( A ^ N
)  gcd  B )  =  1  ->  (
p  ||  ( ( A ^ N )  gcd 
B )  <->  p  ||  1
) )
9089notbid 669 . . . . . . . . . . . . 13  |-  ( ( ( A ^ N
)  gcd  B )  =  1  ->  ( -.  p  ||  ( ( A ^ N )  gcd  B )  <->  -.  p  ||  1 ) )
9153, 90syl5ibrcom 157 . . . . . . . . . . . 12  |-  ( p  e.  Prime  ->  ( ( ( A ^ N
)  gcd  B )  =  1  ->  -.  p  ||  ( ( A ^ N )  gcd 
B ) ) )
9291necon2ad 2434 . . . . . . . . . . 11  |-  ( p  e.  Prime  ->  ( p 
||  ( ( A ^ N )  gcd 
B )  ->  (
( A ^ N
)  gcd  B )  =/=  1 ) )
9392adantl 277 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
p  ||  ( ( A ^ N )  gcd 
B )  ->  (
( A ^ N
)  gcd  B )  =/=  1 ) )
9486, 88, 933syld 57 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0
) )  /\  p  e.  Prime )  ->  (
p  ||  ( A  gcd  B )  ->  (
( A ^ N
)  gcd  B )  =/=  1 ) )
9594rexlimdva 2624 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( E. p  e. 
Prime  p  ||  ( A  gcd  B )  -> 
( ( A ^ N )  gcd  B
)  =/=  1 ) )
96 eluz2b3 9745 . . . . . . . . . 10  |-  ( ( ( A ^ N
)  gcd  B )  e.  ( ZZ>= `  2 )  <->  ( ( ( A ^ N )  gcd  B
)  e.  NN  /\  ( ( A ^ N )  gcd  B
)  =/=  1 ) )
9796baib 921 . . . . . . . . 9  |-  ( ( ( A ^ N
)  gcd  B )  e.  NN  ->  ( (
( A ^ N
)  gcd  B )  e.  ( ZZ>= `  2 )  <->  ( ( A ^ N
)  gcd  B )  =/=  1 ) )
9834, 97syl 14 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( ( A ^ N )  gcd 
B )  e.  (
ZZ>= `  2 )  <->  ( ( A ^ N )  gcd 
B )  =/=  1
) )
9995, 98sylibrd 169 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( E. p  e. 
Prime  p  ||  ( A  gcd  B )  -> 
( ( A ^ N )  gcd  B
)  e.  ( ZZ>= ` 
2 ) ) )
10068, 99syl5 32 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( A  gcd  B )  e.  ( ZZ>= ` 
2 )  ->  (
( A ^ N
)  gcd  B )  e.  ( ZZ>= `  2 )
) )
10167, 100impbid 129 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( ( A ^ N )  gcd 
B )  e.  (
ZZ>= `  2 )  <->  ( A  gcd  B )  e.  (
ZZ>= `  2 ) ) )
102101, 98, 653bitr3d 218 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( ( A ^ N )  gcd 
B )  =/=  1  <->  ( A  gcd  B )  =/=  1 ) )
103 simp1 1000 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  ->  A  e.  ZZ )
104 simp3 1002 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  ->  N  e.  NN )
105104nnnn0d 9368 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  ->  N  e.  NN0 )
106103, 105, 17syl2anc 411 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  ->  ( A ^ N )  e.  ZZ )
107 simp2 1001 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  ->  B  e.  ZZ )
108106, 107gcdcld 12364 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  ->  (
( A ^ N
)  gcd  B )  e.  NN0 )
109108nn0zd 9513 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  ->  (
( A ^ N
)  gcd  B )  e.  ZZ )
110 1zzd 9419 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  ->  1  e.  ZZ )
111 zdceq 9468 . . . . . . 7  |-  ( ( ( ( A ^ N )  gcd  B
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( ( A ^ N
)  gcd  B )  =  1 )
112109, 110, 111syl2anc 411 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  -> DECID  ( ( A ^ N )  gcd  B
)  =  1 )
113103, 107gcdcld 12364 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  ->  ( A  gcd  B )  e. 
NN0 )
114113nn0zd 9513 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  ->  ( A  gcd  B )  e.  ZZ )
115 zdceq 9468 . . . . . . 7  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A  gcd  B )  =  1 )
116114, 110, 115syl2anc 411 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  -> DECID  ( A  gcd  B
)  =  1 )
117 nebidc 2457 . . . . . 6  |-  (DECID  ( ( A ^ N )  gcd  B )  =  1  ->  (DECID  ( A  gcd  B )  =  1  ->  ( ( ( ( A ^ N
)  gcd  B )  =  1  <->  ( A  gcd  B )  =  1 )  <->  ( ( ( A ^ N )  gcd  B )  =/=  1  <->  ( A  gcd  B )  =/=  1 ) ) ) )
118112, 116, 117sylc 62 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  ->  (
( ( ( A ^ N )  gcd 
B )  =  1  <-> 
( A  gcd  B
)  =  1 )  <-> 
( ( ( A ^ N )  gcd 
B )  =/=  1  <->  ( A  gcd  B )  =/=  1 ) ) )
119118adantr 276 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( ( ( A ^ N )  gcd  B )  =  1  <->  ( A  gcd  B )  =  1 )  <-> 
( ( ( A ^ N )  gcd 
B )  =/=  1  <->  ( A  gcd  B )  =/=  1 ) ) )
120102, 119mpbird 167 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( ( A ^ N )  gcd 
B )  =  1  <-> 
( A  gcd  B
)  =  1 ) )
121120ex 115 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  ->  ( -.  ( A  =  0  /\  B  =  0 )  ->  ( (
( A ^ N
)  gcd  B )  =  1  <->  ( A  gcd  B )  =  1 ) ) )
122 gcdmndc 12351 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( A  =  0  /\  B  =  0 ) )
123 exmiddc 838 . . . 4  |-  (DECID  ( A  =  0  /\  B  =  0 )  -> 
( ( A  =  0  /\  B  =  0 )  \/  -.  ( A  =  0  /\  B  =  0
) ) )
124122, 123syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  =  0  /\  B  =  0 )  \/  -.  ( A  =  0  /\  B  =  0
) ) )
1251243adant3 1020 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  ->  (
( A  =  0  /\  B  =  0 )  \/  -.  ( A  =  0  /\  B  =  0 ) ) )
12612, 121, 125mpjaod 720 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  ->  (
( ( A ^ N )  gcd  B
)  =  1  <->  ( A  gcd  B )  =  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2177    =/= wne 2377   E.wrex 2486   class class class wbr 4051   ` cfv 5280  (class class class)co 5957   CCcc 7943   0cc0 7945   1c1 7946   NNcn 9056   2c2 9107   NN0cn0 9315   ZZcz 9392   ZZ>=cuz 9668   ^cexp 10705    || cdvds 12173    gcd cgcd 12349   Primecprime 12504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-1o 6515  df-2o 6516  df-er 6633  df-en 6841  df-sup 7101  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-fl 10435  df-mod 10490  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-dvds 12174  df-gcd 12350  df-prm 12505
This theorem is referenced by:  rpexp1i  12551  phiprmpw  12619  pockthlem  12754  logbgcd1irr  15514  logbgcd1irraplemexp  15515
  Copyright terms: Public domain W3C validator