| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon3bid | Unicode version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon3bid.1 |
|
| Ref | Expression |
|---|---|
| necon3bid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2377 |
. 2
| |
| 2 | necon3bid.1 |
. . 3
| |
| 3 | 2 | necon3bbid 2416 |
. 2
|
| 4 | 1, 3 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-ne 2377 |
| This theorem is referenced by: nebidc 2456 addneintrd 8262 addneintr2d 8263 negne0bd 8378 negned 8382 subne0d 8394 subne0ad 8396 subneintrd 8429 subneintr2d 8431 qapne 9762 xrlttri3 9921 xaddass2 9994 seqf1oglem1 10666 sqne0 10752 fihashneq0 10941 hashnncl 10942 ccat1st1st 11096 pfxn0 11142 cjne0 11252 absne0d 11531 sqrt2irraplemnn 12534 4sqlem11 12757 ringinvnz1ne0 13844 metn0 14883 perfectlem2 15505 lgsabs1 15549 neap0mkv 16045 |
| Copyright terms: Public domain | W3C validator |