| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon3bid | Unicode version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon3bid.1 |
|
| Ref | Expression |
|---|---|
| necon3bid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2368 |
. 2
| |
| 2 | necon3bid.1 |
. . 3
| |
| 3 | 2 | necon3bbid 2407 |
. 2
|
| 4 | 1, 3 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-ne 2368 |
| This theorem is referenced by: nebidc 2447 addneintrd 8216 addneintr2d 8217 negne0bd 8332 negned 8336 subne0d 8348 subne0ad 8350 subneintrd 8383 subneintr2d 8385 qapne 9715 xrlttri3 9874 xaddass2 9947 seqf1oglem1 10613 sqne0 10699 fihashneq0 10888 hashnncl 10889 cjne0 11075 absne0d 11354 sqrt2irraplemnn 12357 4sqlem11 12580 ringinvnz1ne0 13615 metn0 14624 perfectlem2 15246 lgsabs1 15290 neap0mkv 15723 |
| Copyright terms: Public domain | W3C validator |