| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon3bid | Unicode version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| necon3bid.1 |
|
| Ref | Expression |
|---|---|
| necon3bid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2401 |
. 2
| |
| 2 | necon3bid.1 |
. . 3
| |
| 3 | 2 | necon3bbid 2440 |
. 2
|
| 4 | 1, 3 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 df-ne 2401 |
| This theorem is referenced by: nebidc 2480 addneintrd 8334 addneintr2d 8335 negne0bd 8450 negned 8454 subne0d 8466 subne0ad 8468 subneintrd 8501 subneintr2d 8503 qapne 9834 xrlttri3 9993 xaddass2 10066 seqf1oglem1 10741 sqne0 10827 fihashneq0 11016 hashnncl 11017 ccat1st1st 11172 pfxn0 11220 cjne0 11419 absne0d 11698 sqrt2irraplemnn 12701 4sqlem11 12924 ringinvnz1ne0 14012 metn0 15052 perfectlem2 15674 lgsabs1 15718 neap0mkv 16437 |
| Copyright terms: Public domain | W3C validator |