Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necon3bid | Unicode version |
Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon3bid.1 |
Ref | Expression |
---|---|
necon3bid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2341 | . 2 | |
2 | necon3bid.1 | . . 3 | |
3 | 2 | necon3bbid 2380 | . 2 |
4 | 1, 3 | syl5bb 191 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wceq 1348 wne 2340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 df-ne 2341 |
This theorem is referenced by: nebidc 2420 addneintrd 8096 addneintr2d 8097 negne0bd 8212 negned 8216 subne0d 8228 subne0ad 8230 subneintrd 8263 subneintr2d 8265 qapne 9587 xrlttri3 9743 xaddass2 9816 sqne0 10530 fihashneq0 10718 hashnncl 10719 cjne0 10861 absne0d 11140 sqrt2irraplemnn 12122 metn0 13133 lgsabs1 13695 |
Copyright terms: Public domain | W3C validator |