Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necon3bid | Unicode version |
Description: Deduction from equality to inequality. (Contributed by NM, 23-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
necon3bid.1 |
Ref | Expression |
---|---|
necon3bid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2337 | . 2 | |
2 | necon3bid.1 | . . 3 | |
3 | 2 | necon3bbid 2376 | . 2 |
4 | 1, 3 | syl5bb 191 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wceq 1343 wne 2336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 df-ne 2337 |
This theorem is referenced by: nebidc 2416 addneintrd 8086 addneintr2d 8087 negne0bd 8202 negned 8206 subne0d 8218 subne0ad 8220 subneintrd 8253 subneintr2d 8255 qapne 9577 xrlttri3 9733 xaddass2 9806 sqne0 10520 fihashneq0 10708 hashnncl 10709 cjne0 10850 absne0d 11129 sqrt2irraplemnn 12111 metn0 13018 lgsabs1 13580 |
Copyright terms: Public domain | W3C validator |