ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqnetrrd Unicode version

Theorem eqnetrrd 2293
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
eqnetrrd.1  |-  ( ph  ->  A  =  B )
eqnetrrd.2  |-  ( ph  ->  A  =/=  C )
Assertion
Ref Expression
eqnetrrd  |-  ( ph  ->  B  =/=  C )

Proof of Theorem eqnetrrd
StepHypRef Expression
1 eqnetrrd.1 . . 3  |-  ( ph  ->  A  =  B )
21eqcomd 2105 . 2  |-  ( ph  ->  B  =  A )
3 eqnetrrd.2 . 2  |-  ( ph  ->  A  =/=  C )
42, 3eqnetrd 2291 1  |-  ( ph  ->  B  =/=  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1299    =/= wne 2267
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-5 1391  ax-gen 1393  ax-4 1455  ax-17 1474  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-cleq 2093  df-ne 2268
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator