Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqnetrrd | Unicode version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
eqnetrrd.1 | |
eqnetrrd.2 |
Ref | Expression |
---|---|
eqnetrrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnetrrd.1 | . . 3 | |
2 | 1 | eqcomd 2163 | . 2 |
3 | eqnetrrd.2 | . 2 | |
4 | 2, 3 | eqnetrd 2351 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wne 2327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1427 ax-gen 1429 ax-4 1490 ax-17 1506 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 df-ne 2328 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |