ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeqtrri Unicode version

Theorem neeqtrri 2365
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
neeqtrr.1  |-  A  =/= 
B
neeqtrr.2  |-  C  =  B
Assertion
Ref Expression
neeqtrri  |-  A  =/= 
C

Proof of Theorem neeqtrri
StepHypRef Expression
1 neeqtrr.1 . 2  |-  A  =/= 
B
2 neeqtrr.2 . . 3  |-  C  =  B
32eqcomi 2169 . 2  |-  B  =  C
41, 3neeqtri 2363 1  |-  A  =/= 
C
Colors of variables: wff set class
Syntax hints:    = wceq 1343    =/= wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-ne 2337
This theorem is referenced by:  pnfnemnf  7953  basendxnplusgndx  12501  plusgndxnmulrndx  12508  basendxnmulrndx  12509
  Copyright terms: Public domain W3C validator