ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq2i Unicode version

Theorem neeq2i 2363
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.)
Hypothesis
Ref Expression
neeq1i.1  |-  A  =  B
Assertion
Ref Expression
neeq2i  |-  ( C  =/=  A  <->  C  =/=  B )

Proof of Theorem neeq2i
StepHypRef Expression
1 neeq1i.1 . 2  |-  A  =  B
2 neeq2 2361 . 2  |-  ( A  =  B  ->  ( C  =/=  A  <->  C  =/=  B ) )
31, 2ax-mp 5 1  |-  ( C  =/=  A  <->  C  =/=  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353    =/= wne 2347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1447  ax-gen 1449  ax-4 1510  ax-17 1526  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-ne 2348
This theorem is referenced by:  neeq12i  2364  neeqtri  2374  exmidsbthrlem  14855
  Copyright terms: Public domain W3C validator