ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq2i Unicode version

Theorem neeq2i 2356
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.)
Hypothesis
Ref Expression
neeq1i.1  |-  A  =  B
Assertion
Ref Expression
neeq2i  |-  ( C  =/=  A  <->  C  =/=  B )

Proof of Theorem neeq2i
StepHypRef Expression
1 neeq1i.1 . 2  |-  A  =  B
2 neeq2 2354 . 2  |-  ( A  =  B  ->  ( C  =/=  A  <->  C  =/=  B ) )
31, 2ax-mp 5 1  |-  ( C  =/=  A  <->  C  =/=  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348    =/= wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-4 1503  ax-17 1519  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-ne 2341
This theorem is referenced by:  neeq12i  2357  neeqtri  2367  exmidsbthrlem  14054
  Copyright terms: Public domain W3C validator