ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nf4r GIF version

Theorem nf4r 1650
Description: If 𝜑 is always true or always false, then variable 𝑥 is effectively not free in 𝜑. The converse holds given a decidability condition, as seen at nf4dc 1649. (Contributed by Jim Kingdon, 21-Jul-2018.)
Assertion
Ref Expression
nf4r ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) → Ⅎ𝑥𝜑)

Proof of Theorem nf4r
StepHypRef Expression
1 orcom 718 . . 3 ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑))
2 alnex 1476 . . . 4 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
32orbi2i 752 . . 3 ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑))
41, 3bitr4i 186 . 2 ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
5 imorr 711 . . 3 ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) → (∃𝑥𝜑 → ∀𝑥𝜑))
6 nf2 1647 . . 3 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
75, 6sylibr 133 . 2 ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) → Ⅎ𝑥𝜑)
84, 7sylbir 134 1 ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) → Ⅎ𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 698  wal 1330  wnf 1437  wex 1469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-gen 1426  ax-ie2 1471  ax-4 1488  ax-ial 1515
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-fal 1338  df-nf 1438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator