![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nf4r | GIF version |
Description: If 𝜑 is always true or always false, then variable 𝑥 is effectively not free in 𝜑. The converse holds given a decidability condition, as seen at nf4dc 1612. (Contributed by Jim Kingdon, 21-Jul-2018.) |
Ref | Expression |
---|---|
nf4r | ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) → Ⅎ𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 685 | . . 3 ⊢ ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑)) | |
2 | alnex 1440 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
3 | 2 | orbi2i 717 | . . 3 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑)) |
4 | 1, 3 | bitr4i 186 | . 2 ⊢ ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) |
5 | imorr 838 | . . 3 ⊢ ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) → (∃𝑥𝜑 → ∀𝑥𝜑)) | |
6 | nf2 1610 | . . 3 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
7 | 5, 6 | sylibr 133 | . 2 ⊢ ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) → Ⅎ𝑥𝜑) |
8 | 4, 7 | sylbir 134 | 1 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) → Ⅎ𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 667 ∀wal 1294 Ⅎwnf 1401 ∃wex 1433 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-gen 1390 ax-ie2 1435 ax-4 1452 ax-ial 1479 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-fal 1302 df-nf 1402 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |