Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nf4r | GIF version |
Description: If 𝜑 is always true or always false, then variable 𝑥 is effectively not free in 𝜑. The converse holds given a decidability condition, as seen at nf4dc 1658. (Contributed by Jim Kingdon, 21-Jul-2018.) |
Ref | Expression |
---|---|
nf4r | ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) → Ⅎ𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 718 | . . 3 ⊢ ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑)) | |
2 | alnex 1487 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
3 | 2 | orbi2i 752 | . . 3 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑)) |
4 | 1, 3 | bitr4i 186 | . 2 ⊢ ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) |
5 | imorr 711 | . . 3 ⊢ ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) → (∃𝑥𝜑 → ∀𝑥𝜑)) | |
6 | nf2 1656 | . . 3 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
7 | 5, 6 | sylibr 133 | . 2 ⊢ ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) → Ⅎ𝑥𝜑) |
8 | 4, 7 | sylbir 134 | 1 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) → Ⅎ𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 698 ∀wal 1341 Ⅎwnf 1448 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-gen 1437 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |