ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcr Unicode version

Theorem nfcr 2300
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfcr  |-  ( F/_ x A  ->  F/ x  y  e.  A )
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem nfcr
StepHypRef Expression
1 df-nfc 2297 . 2  |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
2 sp 1499 . 2  |-  ( A. y F/ x  y  e.  A  ->  F/ x  y  e.  A )
31, 2sylbi 120 1  |-  ( F/_ x A  ->  F/ x  y  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341   F/wnf 1448    e. wcel 2136   F/_wnfc 2295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-4 1498
This theorem depends on definitions:  df-bi 116  df-nfc 2297
This theorem is referenced by:  nfcrii  2301  nfcrd  2322  abidnf  2894  csbtt  3057  csbnestgf  3097
  Copyright terms: Public domain W3C validator