Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abidnf | Unicode version |
Description: Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
abidnf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1504 | . . 3 | |
2 | nfcr 2304 | . . . 4 | |
3 | 2 | nfrd 1513 | . . 3 |
4 | 1, 3 | impbid2 142 | . 2 |
5 | 4 | abbi1dv 2290 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1346 wceq 1348 wcel 2141 cab 2156 wnfc 2299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 |
This theorem is referenced by: dedhb 2899 nfopd 3782 nfimad 4962 nffvd 5508 |
Copyright terms: Public domain | W3C validator |