ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abidnf Unicode version

Theorem abidnf 2920
Description: Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.)
Assertion
Ref Expression
abidnf  |-  ( F/_ x A  ->  { z  |  A. x  z  e.  A }  =  A )
Distinct variable groups:    x, z    z, A
Allowed substitution hint:    A( x)

Proof of Theorem abidnf
StepHypRef Expression
1 sp 1522 . . 3  |-  ( A. x  z  e.  A  ->  z  e.  A )
2 nfcr 2324 . . . 4  |-  ( F/_ x A  ->  F/ x  z  e.  A )
32nfrd 1531 . . 3  |-  ( F/_ x A  ->  ( z  e.  A  ->  A. x  z  e.  A )
)
41, 3impbid2 143 . 2  |-  ( F/_ x A  ->  ( A. x  z  e.  A  <->  z  e.  A ) )
54abbi1dv 2309 1  |-  ( F/_ x A  ->  { z  |  A. x  z  e.  A }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362    = wceq 1364    e. wcel 2160   {cab 2175   F/_wnfc 2319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321
This theorem is referenced by:  dedhb  2921  nfopd  3810  nfimad  4997  nffvd  5546
  Copyright terms: Public domain W3C validator