ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abidnf Unicode version

Theorem abidnf 2894
Description: Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.)
Assertion
Ref Expression
abidnf  |-  ( F/_ x A  ->  { z  |  A. x  z  e.  A }  =  A )
Distinct variable groups:    x, z    z, A
Allowed substitution hint:    A( x)

Proof of Theorem abidnf
StepHypRef Expression
1 sp 1499 . . 3  |-  ( A. x  z  e.  A  ->  z  e.  A )
2 nfcr 2300 . . . 4  |-  ( F/_ x A  ->  F/ x  z  e.  A )
32nfrd 1508 . . 3  |-  ( F/_ x A  ->  ( z  e.  A  ->  A. x  z  e.  A )
)
41, 3impbid2 142 . 2  |-  ( F/_ x A  ->  ( A. x  z  e.  A  <->  z  e.  A ) )
54abbi1dv 2286 1  |-  ( F/_ x A  ->  { z  |  A. x  z  e.  A }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341    = wceq 1343    e. wcel 2136   {cab 2151   F/_wnfc 2295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297
This theorem is referenced by:  dedhb  2895  nfopd  3775  nfimad  4955  nffvd  5498
  Copyright terms: Public domain W3C validator