Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abidnf | Unicode version |
Description: Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
abidnf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1499 | . . 3 | |
2 | nfcr 2300 | . . . 4 | |
3 | 2 | nfrd 1508 | . . 3 |
4 | 1, 3 | impbid2 142 | . 2 |
5 | 4 | abbi1dv 2286 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1341 wceq 1343 wcel 2136 cab 2151 wnfc 2295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 |
This theorem is referenced by: dedhb 2895 nfopd 3775 nfimad 4955 nffvd 5498 |
Copyright terms: Public domain | W3C validator |