ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abidnf Unicode version

Theorem abidnf 2907
Description: Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.)
Assertion
Ref Expression
abidnf  |-  ( F/_ x A  ->  { z  |  A. x  z  e.  A }  =  A )
Distinct variable groups:    x, z    z, A
Allowed substitution hint:    A( x)

Proof of Theorem abidnf
StepHypRef Expression
1 sp 1511 . . 3  |-  ( A. x  z  e.  A  ->  z  e.  A )
2 nfcr 2311 . . . 4  |-  ( F/_ x A  ->  F/ x  z  e.  A )
32nfrd 1520 . . 3  |-  ( F/_ x A  ->  ( z  e.  A  ->  A. x  z  e.  A )
)
41, 3impbid2 143 . 2  |-  ( F/_ x A  ->  ( A. x  z  e.  A  <->  z  e.  A ) )
54abbi1dv 2297 1  |-  ( F/_ x A  ->  { z  |  A. x  z  e.  A }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351    = wceq 1353    e. wcel 2148   {cab 2163   F/_wnfc 2306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308
This theorem is referenced by:  dedhb  2908  nfopd  3797  nfimad  4981  nffvd  5529
  Copyright terms: Public domain W3C validator