ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbtt Unicode version

Theorem csbtt 3071
Description: Substitution doesn't affect a constant  B (in which  x is not free). (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
csbtt  |-  ( ( A  e.  V  /\  F/_ x B )  ->  [_ A  /  x ]_ B  =  B
)

Proof of Theorem csbtt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 3060 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
2 nfcr 2311 . . . 4  |-  ( F/_ x B  ->  F/ x  y  e.  B )
3 sbctt 3031 . . . 4  |-  ( ( A  e.  V  /\  F/ x  y  e.  B )  ->  ( [. A  /  x ]. y  e.  B  <->  y  e.  B ) )
42, 3sylan2 286 . . 3  |-  ( ( A  e.  V  /\  F/_ x B )  -> 
( [. A  /  x ]. y  e.  B  <->  y  e.  B ) )
54abbi1dv 2297 . 2  |-  ( ( A  e.  V  /\  F/_ x B )  ->  { y  |  [. A  /  x ]. y  e.  B }  =  B )
61, 5eqtrid 2222 1  |-  ( ( A  e.  V  /\  F/_ x B )  ->  [_ A  /  x ]_ B  =  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   F/wnf 1460    e. wcel 2148   {cab 2163   F/_wnfc 2306   [.wsbc 2964   [_csb 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sbc 2965  df-csb 3060
This theorem is referenced by:  csbconstgf  3072  sbnfc2  3119
  Copyright terms: Public domain W3C validator