ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbtt Unicode version

Theorem csbtt 3043
Description: Substitution doesn't affect a constant  B (in which  x is not free). (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
csbtt  |-  ( ( A  e.  V  /\  F/_ x B )  ->  [_ A  /  x ]_ B  =  B
)

Proof of Theorem csbtt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 3032 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
2 nfcr 2291 . . . 4  |-  ( F/_ x B  ->  F/ x  y  e.  B )
3 sbctt 3003 . . . 4  |-  ( ( A  e.  V  /\  F/ x  y  e.  B )  ->  ( [. A  /  x ]. y  e.  B  <->  y  e.  B ) )
42, 3sylan2 284 . . 3  |-  ( ( A  e.  V  /\  F/_ x B )  -> 
( [. A  /  x ]. y  e.  B  <->  y  e.  B ) )
54abbi1dv 2277 . 2  |-  ( ( A  e.  V  /\  F/_ x B )  ->  { y  |  [. A  /  x ]. y  e.  B }  =  B )
61, 5syl5eq 2202 1  |-  ( ( A  e.  V  /\  F/_ x B )  ->  [_ A  /  x ]_ B  =  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335   F/wnf 1440    e. wcel 2128   {cab 2143   F/_wnfc 2286   [.wsbc 2937   [_csb 3031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-sbc 2938  df-csb 3032
This theorem is referenced by:  csbconstgf  3044  sbnfc2  3091
  Copyright terms: Public domain W3C validator