ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbtt Unicode version

Theorem csbtt 3096
Description: Substitution doesn't affect a constant  B (in which  x is not free). (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
csbtt  |-  ( ( A  e.  V  /\  F/_ x B )  ->  [_ A  /  x ]_ B  =  B
)

Proof of Theorem csbtt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 3085 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
2 nfcr 2331 . . . 4  |-  ( F/_ x B  ->  F/ x  y  e.  B )
3 sbctt 3056 . . . 4  |-  ( ( A  e.  V  /\  F/ x  y  e.  B )  ->  ( [. A  /  x ]. y  e.  B  <->  y  e.  B ) )
42, 3sylan2 286 . . 3  |-  ( ( A  e.  V  /\  F/_ x B )  -> 
( [. A  /  x ]. y  e.  B  <->  y  e.  B ) )
54abbi1dv 2316 . 2  |-  ( ( A  e.  V  /\  F/_ x B )  ->  { y  |  [. A  /  x ]. y  e.  B }  =  B )
61, 5eqtrid 2241 1  |-  ( ( A  e.  V  /\  F/_ x B )  ->  [_ A  /  x ]_ B  =  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   F/wnf 1474    e. wcel 2167   {cab 2182   F/_wnfc 2326   [.wsbc 2989   [_csb 3084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-csb 3085
This theorem is referenced by:  csbconstgf  3097  sbnfc2  3145
  Copyright terms: Public domain W3C validator