| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcr | GIF version | ||
| Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfcr | ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfc 2336 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 2 | sp 1533 | . 2 ⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 Ⅎwnf 1482 ∈ wcel 2175 Ⅎwnfc 2334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-4 1532 |
| This theorem depends on definitions: df-bi 117 df-nfc 2336 |
| This theorem is referenced by: nfcrii 2340 nfcrd 2361 abidnf 2940 csbtt 3104 csbnestgf 3145 |
| Copyright terms: Public domain | W3C validator |