ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcr GIF version

Theorem nfcr 2300
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfcr (𝑥𝐴 → Ⅎ𝑥 𝑦𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfcr
StepHypRef Expression
1 df-nfc 2297 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 sp 1499 . 2 (∀𝑦𝑥 𝑦𝐴 → Ⅎ𝑥 𝑦𝐴)
31, 2sylbi 120 1 (𝑥𝐴 → Ⅎ𝑥 𝑦𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  wnf 1448  wcel 2136  wnfc 2295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-4 1498
This theorem depends on definitions:  df-bi 116  df-nfc 2297
This theorem is referenced by:  nfcrii  2301  nfcrd  2322  abidnf  2894  csbtt  3057  csbnestgf  3097
  Copyright terms: Public domain W3C validator