ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcrii Unicode version

Theorem nfcrii 2305
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcri.1  |-  F/_ x A
Assertion
Ref Expression
nfcrii  |-  ( y  e.  A  ->  A. x  y  e.  A )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem nfcrii
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfcri.1 . . . 4  |-  F/_ x A
2 nfcr 2304 . . . 4  |-  ( F/_ x A  ->  F/ x  z  e.  A )
31, 2ax-mp 5 . . 3  |-  F/ x  z  e.  A
43nfri 1512 . 2  |-  ( z  e.  A  ->  A. x  z  e.  A )
54hblem 2278 1  |-  ( y  e.  A  ->  A. x  y  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346   F/wnf 1453    e. wcel 2141   F/_wnfc 2299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-cleq 2163  df-clel 2166  df-nfc 2301
This theorem is referenced by:  nfcri  2306
  Copyright terms: Public domain W3C validator