Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfnf | Unicode version |
Description: If is not free in , it is not free in . (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
Ref | Expression |
---|---|
nfal.1 |
Ref | Expression |
---|---|
nfnf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1454 | . 2 | |
2 | nfal.1 | . . . 4 | |
3 | 2 | nfal 1569 | . . . 4 |
4 | 2, 3 | nfim 1565 | . . 3 |
5 | 4 | nfal 1569 | . 2 |
6 | 1, 5 | nfxfr 1467 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1346 wnf 1453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-4 1503 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: nfnfc 2319 |
Copyright terms: Public domain | W3C validator |