ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnf Unicode version

Theorem nfnf 1565
Description: If  x is not free in  ph, it is not free in  F/ y ph. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
Hypothesis
Ref Expression
nfal.1  |-  F/ x ph
Assertion
Ref Expression
nfnf  |-  F/ x F/ y ph

Proof of Theorem nfnf
StepHypRef Expression
1 df-nf 1449 . 2  |-  ( F/ y ph  <->  A. y
( ph  ->  A. y ph ) )
2 nfal.1 . . . 4  |-  F/ x ph
32nfal 1564 . . . 4  |-  F/ x A. y ph
42, 3nfim 1560 . . 3  |-  F/ x
( ph  ->  A. y ph )
54nfal 1564 . 2  |-  F/ x A. y ( ph  ->  A. y ph )
61, 5nfxfr 1462 1  |-  F/ x F/ y ph
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341   F/wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-4 1498  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  nfnfc  2315
  Copyright terms: Public domain W3C validator