| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfim | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| nfim.1 |
|
| nfim.2 |
|
| Ref | Expression |
|---|---|
| nfim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfim.1 |
. 2
| |
| 2 | nfim.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | nfim1 1594 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 |
| This theorem is referenced by: nfnf 1600 nfia1 1603 sb4or 1856 cbval2 1945 nfsbv 1975 nfmo1 2066 mo23 2095 euexex 2139 nfabdw 2367 cbvralfw 2728 cbvralf 2730 vtocl2gf 2835 vtocl3gf 2836 vtoclgaf 2838 vtocl2gaf 2840 vtocl3gaf 2842 rspct 2870 rspc 2871 ralab2 2937 mob 2955 csbhypf 3132 cbvralcsf 3156 dfss2f 3184 elintab 3896 disjiun 4040 nfpo 4349 nfso 4350 nffrfor 4396 frind 4400 nfwe 4403 reusv3 4508 tfis 4632 findes 4652 omsinds 4671 dffun4f 5288 fv3 5601 tz6.12c 5608 fvmptss2 5656 fvmptssdm 5666 fvmptdf 5669 fvmptt 5673 fvmptf 5674 fmptco 5748 dff13f 5841 ovmpos 6071 ov2gf 6072 ovmpodf 6079 ovi3 6085 dfoprab4f 6281 tfri3 6455 dom2lem 6865 findcard2 6988 findcard2s 6989 ac6sfi 6997 nfsup 7096 ismkvnex 7259 exmidfodomrlemr 7312 exmidfodomrlemrALT 7313 axpre-suploclemres 8016 uzind4s 9713 indstr 9716 supinfneg 9718 infsupneg 9719 zsupcllemstep 10374 uzsinds 10591 fimaxre2 11571 summodclem2a 11725 fsumsplitf 11752 fproddivapf 11975 fprodsplitf 11976 fprodsplit1f 11978 divalglemeunn 12265 divalglemeuneg 12267 bezoutlemmain 12352 prmind2 12475 exmidunben 12830 cnmptcom 14803 dvmptfsum 15230 lgseisenlem2 15581 gropd 15677 grstructd2dom 15678 elabgft1 15751 elabgf2 15753 bj-rspgt 15759 bj-bdfindes 15922 setindis 15940 bdsetindis 15942 bj-findis 15952 bj-findes 15954 pw1nct 15977 ismkvnnlem 16028 |
| Copyright terms: Public domain | W3C validator |