![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfim | Unicode version |
Description: If ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfim.1 |
![]() ![]() ![]() ![]() |
nfim.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfim |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfim.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfim.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | nfim1 1571 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: nfnf 1577 nfia1 1580 sb4or 1833 cbval2 1921 nfsbv 1947 nfmo1 2038 mo23 2067 euexex 2111 nfabdw 2338 cbvralfw 2695 cbvralf 2697 vtocl2gf 2800 vtocl3gf 2801 vtoclgaf 2803 vtocl2gaf 2805 vtocl3gaf 2807 rspct 2835 rspc 2836 ralab2 2902 mob 2920 csbhypf 3096 cbvralcsf 3120 dfss2f 3147 elintab 3856 disjiun 3999 nfpo 4302 nfso 4303 nffrfor 4349 frind 4353 nfwe 4356 reusv3 4461 tfis 4583 findes 4603 omsinds 4622 dffun4f 5233 fv3 5539 tz6.12c 5546 fvmptss2 5592 fvmptssdm 5601 fvmptdf 5604 fvmptt 5608 fvmptf 5609 fmptco 5683 dff13f 5771 ovmpos 5998 ov2gf 5999 ovmpodf 6006 ovi3 6011 dfoprab4f 6194 tfri3 6368 dom2lem 6772 findcard2 6889 findcard2s 6890 ac6sfi 6898 nfsup 6991 ismkvnex 7153 exmidfodomrlemr 7201 exmidfodomrlemrALT 7202 axpre-suploclemres 7900 uzind4s 9590 indstr 9593 supinfneg 9595 infsupneg 9596 uzsinds 10442 fimaxre2 11235 summodclem2a 11389 fsumsplitf 11416 fproddivapf 11639 fprodsplitf 11640 fprodsplit1f 11642 divalglemeunn 11926 divalglemeuneg 11928 zsupcllemstep 11946 bezoutlemmain 11999 prmind2 12120 exmidunben 12427 cnmptcom 13801 lgseisenlem2 14454 elabgft1 14533 elabgf2 14535 bj-rspgt 14541 bj-bdfindes 14704 setindis 14722 bdsetindis 14724 bj-findis 14734 bj-findes 14736 pw1nct 14755 ismkvnnlem 14803 |
Copyright terms: Public domain | W3C validator |