| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfim | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| nfim.1 |
|
| nfim.2 |
|
| Ref | Expression |
|---|---|
| nfim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfim.1 |
. 2
| |
| 2 | nfim.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | nfim1 1594 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 |
| This theorem is referenced by: nfnf 1600 nfia1 1603 sb4or 1856 cbval2 1945 nfsbv 1975 nfmo1 2066 mo23 2095 euexex 2139 nfabdw 2367 cbvralfw 2728 cbvralf 2730 vtocl2gf 2835 vtocl3gf 2836 vtoclgaf 2838 vtocl2gaf 2840 vtocl3gaf 2842 rspct 2870 rspc 2871 ralab2 2937 mob 2955 csbhypf 3132 cbvralcsf 3156 dfss2f 3184 elintab 3896 disjiun 4039 nfpo 4348 nfso 4349 nffrfor 4395 frind 4399 nfwe 4402 reusv3 4507 tfis 4631 findes 4651 omsinds 4670 dffun4f 5287 fv3 5599 tz6.12c 5606 fvmptss2 5654 fvmptssdm 5664 fvmptdf 5667 fvmptt 5671 fvmptf 5672 fmptco 5746 dff13f 5839 ovmpos 6069 ov2gf 6070 ovmpodf 6077 ovi3 6083 dfoprab4f 6279 tfri3 6453 dom2lem 6863 findcard2 6986 findcard2s 6987 ac6sfi 6995 nfsup 7094 ismkvnex 7257 exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 axpre-suploclemres 8014 uzind4s 9711 indstr 9714 supinfneg 9716 infsupneg 9717 zsupcllemstep 10372 uzsinds 10589 fimaxre2 11538 summodclem2a 11692 fsumsplitf 11719 fproddivapf 11942 fprodsplitf 11943 fprodsplit1f 11945 divalglemeunn 12232 divalglemeuneg 12234 bezoutlemmain 12319 prmind2 12442 exmidunben 12797 cnmptcom 14770 dvmptfsum 15197 lgseisenlem2 15548 gropd 15644 grstructd2dom 15645 elabgft1 15714 elabgf2 15716 bj-rspgt 15722 bj-bdfindes 15885 setindis 15903 bdsetindis 15905 bj-findis 15915 bj-findes 15917 pw1nct 15940 ismkvnnlem 15991 |
| Copyright terms: Public domain | W3C validator |