Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfxfr | Unicode version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfbii.1 | |
nfxfr.2 |
Ref | Expression |
---|---|
nfxfr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfr.2 | . 2 | |
2 | nfbii.1 | . . 3 | |
3 | 2 | nfbii 1461 | . 2 |
4 | 1, 3 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: nfnf1 1532 nf3an 1554 nfnf 1565 nfdc 1647 nfs1f 1768 nfsbv 1935 nfeu1 2025 nfmo1 2026 sb8eu 2027 nfeu 2033 nfnfc1 2311 nfnfc 2315 nfeq 2316 nfel 2317 nfabdw 2327 nfne 2429 nfnel 2438 nfra1 2497 nfre1 2509 nfreu1 2637 nfrmo1 2638 nfss 3135 rabn0m 3436 nfdisjv 3971 nfdisj1 3972 nfpo 4279 nfso 4280 nfse 4319 nffrfor 4326 nffr 4327 nfwe 4333 nfrel 4689 sb8iota 5160 nffun 5211 nffn 5284 nff 5334 nff1 5391 nffo 5409 nff1o 5430 nfiso 5774 nfixpxy 6683 |
Copyright terms: Public domain | W3C validator |