ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfxfr Unicode version

Theorem nfxfr 1488
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfbii.1  |-  ( ph  <->  ps )
nfxfr.2  |-  F/ x ps
Assertion
Ref Expression
nfxfr  |-  F/ x ph

Proof of Theorem nfxfr
StepHypRef Expression
1 nfxfr.2 . 2  |-  F/ x ps
2 nfbii.1 . . 3  |-  ( ph  <->  ps )
32nfbii 1487 . 2  |-  ( F/ x ph  <->  F/ x ps )
41, 3mpbir 146 1  |-  F/ x ph
Colors of variables: wff set class
Syntax hints:    <-> wb 105   F/wnf 1474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463
This theorem depends on definitions:  df-bi 117  df-nf 1475
This theorem is referenced by:  nfnf1  1558  nf3an  1580  nfnf  1591  nfdc  1673  nfs1f  1794  nfsbv  1966  nfeu1  2056  nfmo1  2057  sb8eu  2058  nfeu  2064  nfnfc1  2342  nfnfc  2346  nfeq  2347  nfel  2348  nfabdw  2358  nfne  2460  nfnel  2469  nfra1  2528  nfre1  2540  nfreu1  2669  nfrmo1  2670  nfss  3176  rabn0m  3478  nfdisjv  4022  nfdisj1  4023  nfpo  4336  nfso  4337  nfse  4376  nffrfor  4383  nffr  4384  nfwe  4390  nfrel  4748  sb8iota  5226  nffun  5281  nffn  5354  nff  5404  nff1  5461  nffo  5479  nff1o  5502  nfiso  5853  nfixpxy  6776
  Copyright terms: Public domain W3C validator