| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfxfr | Unicode version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 |
|
| nfxfr.2 |
|
| Ref | Expression |
|---|---|
| nfxfr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxfr.2 |
. 2
| |
| 2 | nfbii.1 |
. . 3
| |
| 3 | 2 | nfbii 1487 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: nfnf1 1558 nf3an 1580 nfnf 1591 nfdc 1673 nfs1f 1794 nfsbv 1966 nfeu1 2056 nfmo1 2057 sb8eu 2058 nfeu 2064 nfnfc1 2342 nfnfc 2346 nfeq 2347 nfel 2348 nfabdw 2358 nfne 2460 nfnel 2469 nfra1 2528 nfre1 2540 nfreu1 2669 nfrmo1 2670 nfss 3177 rabn0m 3479 nfdisjv 4023 nfdisj1 4024 nfpo 4337 nfso 4338 nfse 4377 nffrfor 4384 nffr 4385 nfwe 4391 nfrel 4749 sb8iota 5227 nffun 5282 nffn 5355 nff 5407 nff1 5464 nffo 5482 nff1o 5505 nfiso 5856 nfixpxy 6785 |
| Copyright terms: Public domain | W3C validator |