ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfalt Unicode version

Theorem nfalt 1566
Description: Closed form of nfal 1564. (Contributed by Jim Kingdon, 11-May-2018.)
Assertion
Ref Expression
nfalt  |-  ( A. y F/ x ph  ->  F/ x A. y ph )

Proof of Theorem nfalt
StepHypRef Expression
1 alim 1445 . . . 4  |-  ( A. y ( ph  ->  A. x ph )  -> 
( A. y ph  ->  A. y A. x ph ) )
2 alcom 1466 . . . 4  |-  ( A. y A. x ph  <->  A. x A. y ph )
31, 2syl6ib 160 . . 3  |-  ( A. y ( ph  ->  A. x ph )  -> 
( A. y ph  ->  A. x A. y ph ) )
43alimi 1443 . 2  |-  ( A. x A. y ( ph  ->  A. x ph )  ->  A. x ( A. y ph  ->  A. x A. y ph ) )
5 df-nf 1449 . . . 4  |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
65albii 1458 . . 3  |-  ( A. y F/ x ph  <->  A. y A. x ( ph  ->  A. x ph ) )
7 alcom 1466 . . 3  |-  ( A. y A. x ( ph  ->  A. x ph )  <->  A. x A. y (
ph  ->  A. x ph )
)
86, 7bitri 183 . 2  |-  ( A. y F/ x ph  <->  A. x A. y ( ph  ->  A. x ph ) )
9 df-nf 1449 . 2  |-  ( F/ x A. y ph  <->  A. x ( A. y ph  ->  A. x A. y ph ) )
104, 8, 93imtr4i 200 1  |-  ( A. y F/ x ph  ->  F/ x A. y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341   F/wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  dvelimor  2006
  Copyright terms: Public domain W3C validator