ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnfc Unicode version

Theorem nfnfc 2315
Description: Hypothesis builder for  F/_ y A. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfnfc.1  |-  F/_ x A
Assertion
Ref Expression
nfnfc  |-  F/ x F/_ y A

Proof of Theorem nfnfc
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2297 . 2  |-  ( F/_ y A  <->  A. z F/ y  z  e.  A )
2 nfnfc.1 . . . . 5  |-  F/_ x A
32nfcri 2302 . . . 4  |-  F/ x  z  e.  A
43nfnf 1565 . . 3  |-  F/ x F/ y  z  e.  A
54nfal 1564 . 2  |-  F/ x A. z F/ y  z  e.  A
61, 5nfxfr 1462 1  |-  F/ x F/_ y A
Colors of variables: wff set class
Syntax hints:   A.wal 1341   F/wnf 1448    e. wcel 2136   F/_wnfc 2295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator