ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnfc Unicode version

Theorem nfnfc 2379
Description: Hypothesis builder for  F/_ y A. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfnfc.1  |-  F/_ x A
Assertion
Ref Expression
nfnfc  |-  F/ x F/_ y A

Proof of Theorem nfnfc
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2361 . 2  |-  ( F/_ y A  <->  A. z F/ y  z  e.  A )
2 nfnfc.1 . . . . 5  |-  F/_ x A
32nfcri 2366 . . . 4  |-  F/ x  z  e.  A
43nfnf 1623 . . 3  |-  F/ x F/ y  z  e.  A
54nfal 1622 . 2  |-  F/ x A. z F/ y  z  e.  A
61, 5nfxfr 1520 1  |-  F/ x F/_ y A
Colors of variables: wff set class
Syntax hints:   A.wal 1393   F/wnf 1506    e. wcel 2200   F/_wnfc 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator