| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfnf | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in Ⅎ𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
| Ref | Expression |
|---|---|
| nfal.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfnf | ⊢ Ⅎ𝑥Ⅎ𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1484 | . 2 ⊢ (Ⅎ𝑦𝜑 ↔ ∀𝑦(𝜑 → ∀𝑦𝜑)) | |
| 2 | nfal.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | nfal 1599 | . . . 4 ⊢ Ⅎ𝑥∀𝑦𝜑 |
| 4 | 2, 3 | nfim 1595 | . . 3 ⊢ Ⅎ𝑥(𝜑 → ∀𝑦𝜑) |
| 5 | 4 | nfal 1599 | . 2 ⊢ Ⅎ𝑥∀𝑦(𝜑 → ∀𝑦𝜑) |
| 6 | 1, 5 | nfxfr 1497 | 1 ⊢ Ⅎ𝑥Ⅎ𝑦𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-4 1533 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 |
| This theorem is referenced by: nfnfc 2355 |
| Copyright terms: Public domain | W3C validator |