ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nner Unicode version

Theorem nner 2368
Description: Negation of inequality. (Contributed by Jim Kingdon, 23-Dec-2018.)
Assertion
Ref Expression
nner  |-  ( A  =  B  ->  -.  A  =/=  B )

Proof of Theorem nner
StepHypRef Expression
1 df-ne 2365 . . 3  |-  ( A  =/=  B  <->  -.  A  =  B )
21biimpi 120 . 2  |-  ( A  =/=  B  ->  -.  A  =  B )
32con2i 628 1  |-  ( A  =  B  ->  -.  A  =/=  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1364    =/= wne 2364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2365
This theorem is referenced by:  nn0eln0  4652  funtpg  5305  fin0  6941  hashnncl  10866
  Copyright terms: Public domain W3C validator