ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashnncl Unicode version

Theorem hashnncl 10535
Description: Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
hashnncl  |-  ( A  e.  Fin  ->  (
( `  A )  e.  NN  <->  A  =/=  (/) ) )

Proof of Theorem hashnncl
StepHypRef Expression
1 simpr 109 . . 3  |-  ( ( A  e.  Fin  /\  ( `  A )  e.  NN )  ->  ( `  A )  e.  NN )
2 nnne0 8741 . . . . 5  |-  ( ( `  A )  e.  NN  ->  ( `  A )  =/=  0 )
32adantl 275 . . . 4  |-  ( ( A  e.  Fin  /\  ( `  A )  e.  NN )  ->  ( `  A )  =/=  0
)
4 fihasheq0 10533 . . . . . 6  |-  ( A  e.  Fin  ->  (
( `  A )  =  0  <->  A  =  (/) ) )
54necon3bid 2347 . . . . 5  |-  ( A  e.  Fin  ->  (
( `  A )  =/=  0  <->  A  =/=  (/) ) )
65adantr 274 . . . 4  |-  ( ( A  e.  Fin  /\  ( `  A )  e.  NN )  ->  (
( `  A )  =/=  0  <->  A  =/=  (/) ) )
73, 6mpbid 146 . . 3  |-  ( ( A  e.  Fin  /\  ( `  A )  e.  NN )  ->  A  =/=  (/) )
81, 72thd 174 . 2  |-  ( ( A  e.  Fin  /\  ( `  A )  e.  NN )  ->  (
( `  A )  e.  NN  <->  A  =/=  (/) ) )
92necon2bi 2361 . . . 4  |-  ( ( `  A )  =  0  ->  -.  ( `  A
)  e.  NN )
109adantl 275 . . 3  |-  ( ( A  e.  Fin  /\  ( `  A )  =  0 )  ->  -.  ( `  A )  e.  NN )
114biimpa 294 . . . 4  |-  ( ( A  e.  Fin  /\  ( `  A )  =  0 )  ->  A  =  (/) )
12 nner 2310 . . . 4  |-  ( A  =  (/)  ->  -.  A  =/=  (/) )
1311, 12syl 14 . . 3  |-  ( ( A  e.  Fin  /\  ( `  A )  =  0 )  ->  -.  A  =/=  (/) )
1410, 132falsed 691 . 2  |-  ( ( A  e.  Fin  /\  ( `  A )  =  0 )  ->  (
( `  A )  e.  NN  <->  A  =/=  (/) ) )
15 hashcl 10520 . . 3  |-  ( A  e.  Fin  ->  ( `  A )  e.  NN0 )
16 elnn0 8972 . . 3  |-  ( ( `  A )  e.  NN0  <->  (
( `  A )  e.  NN  \/  ( `  A
)  =  0 ) )
1715, 16sylib 121 . 2  |-  ( A  e.  Fin  ->  (
( `  A )  e.  NN  \/  ( `  A
)  =  0 ) )
188, 14, 17mpjaodan 787 1  |-  ( A  e.  Fin  ->  (
( `  A )  e.  NN  <->  A  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480    =/= wne 2306   (/)c0 3358   ` cfv 5118   Fincfn 6627   0cc0 7613   NNcn 8713   NN0cn0 8970  ♯chash 10514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-recs 6195  df-frec 6281  df-1o 6306  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784  df-ihash 10515
This theorem is referenced by:  1elfz0hash  10545
  Copyright terms: Public domain W3C validator